
Enhancing Visual Clustering using
Adaptive Moving Self-Organizing Maps (AMSOM)

Gerasimos Spanakis and Gerhard Weiss

Department of Data Science and Knowledge Engineering,
Maastricht University,

6200MD, Maastricht, Netherlands
{jerry.spanakis,gerhard.weiss}@maastrichtuniversity.nl

http://www.maastrichtuniversity.nl/DKE

Abstract. Recent advancements in computing technology allowed both scien-
tific and business applications to produce large datasets with increasing complex-
ity and dimensionality. Clustering algorithms are useful in analyzing these large
datasets but often fall short to provide completely satisfactory results. Integrating
clustering and visualization not only yields better clustering results but also leads
to a higher degree of confidence in the findings. Self-Organizing Map (SOM) is
a neural network model which is used to obtain a topology-preserving mapping
from the (usually high dimensional) input/feature space to an output/map space of
fewer dimensions (usually two or three in order to facilitate visualization). Neu-
rons in the output space are connected with each other but this structure remains
fixed throughout training and learning is achieved through the updating of neuron
reference vectors in feature space. Despite the fact that growing variants of SOM
overcome the fixed structure limitation, they increase computational cost and also
do not allow the removal of a neuron after its introduction. In this paper, a variant
of SOM is presented called AMSOM (Adaptive Moving Self-Organizing Map)
that on the one hand creates a more flexible structure where neuron positions are
dynamically altered during training and on the other hand tackles the drawback of
having a predefined grid by allowing neuron addition and/or removal during train-
ing. Experimental evaluation on different literature datasets with diverse charac-
teristics improves SOM training performance, leads to a better visualization of
the input dataset, and provides a framework for determining the optimal number
and structure of neurons as well as the optimal number of clusters.

Keywords: Self-Organizing Maps, Clustering, Visualization, Unsupervised Learn-
ing

1 Introduction

Clustering is one of the basic data analysis tasks: It is a process of organizing data into
similar groups, without any prior knowledge or training. With the increasing graphics
capabilities of the available computers, researchers realized [2, 8] that integrating the
visual component into the clustering process helps to improve the effectiveness of au-
tomated clustering algorithms. This synthesis of computational clustering methods and
interactive visualization techniques not only yields better clustering results but allows

2 Gerasimos Spanakis, Gerhard Weiss

exploration and refinement of the clustering structure. Designing such embedded algo-
rithms is tricky mainly due to two limitations: (a) automated clustering algorithms are
sensitive to input parameters and results may significantly vary and (b) large data spaces
often have skewed distributions which are difficult to be approximated.

The Self-Organizing Map (SOM) [26] is an unsupervised neural network model
which effectively maps high-dimensional data to a low-dimensional space (usually two-
dimensional). The low-dimensional space (also called output space) consists of a grid of
neurons connected with each other, according to a specific structure (can be hexagonal,
rectangular, etc.). This structure allows the topology preservation of input data (i.e.,
similar input patterns are expected to be mapped to neighboring neurons in the output
grid) [23]. By this way, SOM manages to achieve dimensionality reduction, abstraction,
clustering and visualization of the input data and this is the reason that it has been
applied successfully to many different domains and datasets like financial data [11],
speech recognition [24], image classification [29], document clustering [28, 37].

The SOM algorithm raises some issues and problems: (a) SOM’s architecture is
fixed and predefined in terms of number and arrangement of neurons. In case of largely
unknown input data, it is difficult to determine apriori the correct structure that provides
satisfactory results. There is some work in this area in order to how to add/remove neu-
rons but none of current approaches adjusts neuron positions on the grid according to
training progress. (b) Training a SOM comes with a large computation cost, especially
in cases of large datasets and/or large maps. Many epochs might be needed in order for
the SOM to converge and the map to reach a final state.

In this paper we study how an extension of the traditional SOM can effectively used
for visual clustering and handles both issues described above: First, it allows neurons to
change positions during training which provides better visualization and faster training
time. Second, number of neurons can be adjusted (neurons can be either added or re-
moved) according to dataset requirements and training progress. Due to this enhanced
training scheme, the number of epochs required for training is significantly reduced.
The rest of the paper is organized as follows. Section 2 presents background work
on SOM, extensions on the traditional algorithm and their limitations. The proposed
method is presented in Section 3 while experimental setup is described in Section 4.
Finally, Section 5 concludes the paper.

2 Related work

2.1 SOM and Competitive Learning

The Self-Organizing Map (SOM) is a fully connected single-layer linear neural net-
work. The SOM uses a set of neurons, often arranged in a 2-D rectangular or hexagonal
grid, to form a discrete topological mapping of an input space, X ∈ RD. Input space
consists of a set of vectors x j ∈ RD:

x j = [x j1,x j2, ...,x jD]
T (1)

wi is the weight vector associated to neuron i and is a vector of the same dimension
(D) of the input space, M is the total number of neurons. Obviously, these weights
represent the synaptic connections of each neuron i and can be denoted:

Visual Clustering using Adaptive Moving Self-Organizing Maps (AMSOM) 3

wi = [wi1,wi2, ...,wiD]
T (2)

The fundamental principle of SOM is the soft competition between the nodes in the
output layer; not only the node (winner) but also its neighbors are updated [27].

A SOM architecture can be found in Figure 1.

Fig. 1: The SOM (fully connected) architecture.

All the weights w1,w2, ...,wM are initialized to random numbers, in the range of
the corresponding input characteristics. We also introduce a discrete time index t such
that x(t), t = 0,1, ... is presented to network at time t and wi(t) is the weight vector of
neuron i computed at time t. The available input vectors are recycled during the training
(or learning) process: a single pass over the input data is called an epoch.

On-line Training of SOM In the conventional “on-line” or “flow-through” method,
the weight vectors are updated recursively after the presentation of each input vector.
As each input vector is presented, the Euclidean distance between the input vector and
each weight vector is computed:

di(t) = ||x(t)−wi(t)||2 (3)

Next, the winning or best-matching node (denoted by subscript c) is determined by:

c = {i,minidi(t)} (4)

Note that we suppress the implicit dependence of c on discrete time t. The weight
vectors are updated using the following rule:

wi(t +1) = wi(t)+α(t) ·hci(t) · [x(t)−wi(t)] (5)

where α(t) is the learning-rate factor and hci(t) is the neighborhood function. The
learning rate factor controls the overall magnitude of the correction to the weight vec-
tors, and is reduced monotonically during the training phase. The neighborhood func-
tion controls the extent to which wi(t) is allowed to adjust in response to an input most
closely resembling wc(t) and is typically a decreasing function of the distance on the
2-D lattice between nodes c and i. We use the standard Gaussian neighborhood function:

4 Gerasimos Spanakis, Gerhard Weiss

hci(t) = exp
(
−||ri− rc||2

σ(t)2

)
(6)

where ri and rc denote the coordinates of nodes i and c, respectively, on the output
space (usually two-dimensional grid). The width σ(t) of the neighborhood function
decreases during training, from an initial value comparable to the dimension of the
lattice to a final value effectively equal to the width of a single cell. It is this procedure
which produces the self-organization and topology preserving capabilities of the SOM:
presentation of each input vector adjusts the weight vector of the winning node along
with those of its topological neighbors to more closely resemble the input vector. The
converged weight vectors approximate the input probability distribution function, and
can be viewed as prototypes representing the input data.

Batch Training of SOM The SOM update given by Equation (5) is “on-line” in the
sense that the weight vectors are updated after the presentation of each input record. In
the batch SOM algorithm (proposed in [25]), the weights are updated only at the end of
each epoch according to:

wi(t f) =
∑

t ′=t f
t ′=t0

h̃ci(t ′) ·x(t ′)

∑
t ′=t f
t ′=t0

h̃ci(t ′)
(7)

where t0 and t f denote the start and finish of the present epoch, respectively, and
wi(t f) are the weight vectors computed at the end of the present epoch. Hence, the
summations are accumulated during one complete pass over the input data. The winning
node at each presentation of new input vector is computed using:

d̃i(t) = ||x(t)−wi(t0)||2 (8)
c = {i,minid̃i(t)} (9)

where wi(t0) are the weight vectors computed at the end of the previous epoch. The
neighborhood functions h̃ci(t) are computed using Equation (6), but with the winning
nodes determined from Equation (9). This procedure for computing the neighborhood
function is identical to the Voronoi partinioning. As is in the on-line method, the width
of the neighborhood function decreases monotonically over the training phase.

A more concrete explanation of the batch algorithm is given by the following Equa-
tion:

wi =
∑ j n j ·h ji · x̃ j

∑ j n j ·h ji
(10)

where n j is the number of input items mapped into node j and the index j runs
over the nodes in the neighborhood of node i. The basic idea is that for every node j
in the grid, the average x̃ j of all those input items x(t) is formed that have node j (i.e.,
vector w j) as the closest node. The above Equation is used for updating the node weight

Visual Clustering using Adaptive Moving Self-Organizing Maps (AMSOM) 5

vectors and this is repeated for a few times, always using the same batch of input data
items to determine the updated x̃ j.

The batch SOM offers several advantages over the conventional on-line SOM method.
Since the weight updates are not recursive, there is no dependence upon the order in
which the input records are presented. In addition to facilitating the development of
data-partitioned parallel methods, this also eliminates concerns [31] that input records
encountered later in the training sequence may overly influence the final results. The
learning rate parameter α(t) does not appear in the batch SOM algorithm, thus elim-
inating a potential source of poor convergence [9] if this parameter is not properly
specified.

The mathematical theory of the SOM is very complicated and only the one-dimensional
case has been analyzed completely [15], since the SOM belongs to the ‘ill posed’ prob-
lems in mathematics. The SOM can also be looked at as a ‘nonlinear projection’ of the
probability density function of high-dimensional input data onto the two-dimensional
display.

Usually, the input is mapped onto a 1- or 2-dimensional map. Mapping onto higher
dimensions is possible as well, but complicates the visualization. The neurons con-
nected to adjacent neurons by a neighborhood relationship define the structure of the
map. The two most common 2-dimensional grids are the hexagonal grid and the rect-
angular grid and are shown in Figure 2.

(a) Hexagonal grid (b) Rectangular grid

Fig. 2: Typical SOM grids with different neighborhoods around the winner neuron.

The neighborhood function defines the correlation between neurons. The simplest
neighborhood function is called bubble; it is constant over the neighborhood of the
winner neuron and zero otherwise. The neighborhood of different sizes in rectangular
and hexagonal maps can be seen in Figure 2. A more flexible definition is the gaussian
neighborhood function defined by Equation (6).

The number of neurons, the dimensions of the map grid, the map lattice and shape
must be specified before training. The more neurons the grid has, the more flexible the
mapping becomes but the computation complexity of the training phase increases as
well. The choice of the map structure and size is both related to the type of problem and
the subjective choice of the user.

6 Gerasimos Spanakis, Gerhard Weiss

2.2 Flexible Structure in Neural Networks and SOM

The norm in artificial neural nets is that classic techniques involve simple and often
fixed network topologies trained via stimulus-based methods such as backpropagation.
However, there are cases in which the structural design of the network is strongly influ-
enced by the environment and by utilizing constructive and pruning algorithms. Both
these algorithmic categories deliver a network which is gradually adjusted in response
to training data. There are many approaches which apply these algorithms in classic
neural networks [6, 20, 22, 32, 43].

Also, there are many variations of SOM that allow a more flexible structure of the
output map which can be divided into two categories: In the first type, we include grow-
ing grid (GG) [17], incremental GG [5], growing SOM (GSOM) [1] all coming with
different variants. GG is the only variant which allows growing a new node from the
interior of the grid (but this is a whole row or column of nodes). In the rest cases, new
nodes are generated by a boundary node, despite the fact that the highest error could
have been generated by an internal node. The idea is that the error will be propagated to
the exterior to guarantee that growing can only be from the boundaries but this process
can lead to a map structure with not perfect topology preservation. Therefore, map size
becomes very wide after a limited number of insertions, with some additional nodes,
which have no effect. MIGSOM [3] allows a more flexible structure by adding neurons
internally and from the boundary but still does not offer the ability to remove neurons
if necessary.

In the second type of growing variants, the rectangular grid is replaced with some
connected nodes. We denote growing cell structures (GCSs) [16], growing neural gas
(GNG) [18] and growing where required [30]. These works add just the necessary nodes
at the same time, to fine-tune the optimal map size. Nevertheless, GCS and GNG are
facing many difficulties for visualizing high-dimensional data. Visualization in these
cases is guaranteed only with low-dimensional data.

Limitations in growing and visualization led to hierarchical variants of the previous
model like the Growing Hierarchical SOM (GHSOM) [36]. With GHSOM you can
get an idea of the hierarchical structure of the map, but the growing parameter of the
map has to be defined beforehand. Other approaches (like TreeGNG [12] or TreeGCS
[21]) use dendrograms for representation but due to this tree structure they lose the
topological properties.

Disadvantages of these approaches are: (a) the high computational cost due to the
fact that structure starts from a very basic architecture and has to grow in order to reach
an acceptable structure for the data and (b) the fact that after adding neurons there is
not the possibility of removing a neuron if performance is not improving.

3 Expanding the idea of self-organization in neuron locations

During the classic SOM algorithm neuron positions remain unchanged and the grid
is fixed from the beginning till the end of the training. This facilitates the process of
learning (since neighborhood structure is known beforehand) but is restricting regarding
the final result and ways of visualizing it. We propose a different and more flexible

Visual Clustering using Adaptive Moving Self-Organizing Maps (AMSOM) 7

scheme in regard to position vectors ri of neurons, which allows a more adaptive form
of the neuron grid and acts as an extension to the batch learning algorithm.

Starting from an already grown map size, AMSOM can adapt both its size and
structure in order to better represent the data at a specific level of detail. After a spe-
cific number of steps, neurons are analyzed to see whether the level of representation
is sufficient or adjustments are needed: removal and/or addition of neurons. Initially,
connections between neurons are determined based on the grid structure but as training
advances, these can change and adjust according to the way that neuron positions are
also changed during the process. The algorithm flow is described in Figure 3 and more
details about the steps are presented in the following subsections.

1. Initialization Phase
1.1: Derive initial grid structure and size (number of neurons M) of the AMSOM
1.2: Initialize weight vectors (wi) to random values (according to the value range of features).
1.3: Initialize position vectors (ri) according to the initial grid structure
1.4: Initialize edge connectivity matrix (E) values according to the grid connections
1.5: Initialize edge age matrix (A) values to zero
1.6: Define growing threshold (GT) according to dimension of the data D and a spreading
factor (SF).
2. Training phase
for t = 1 : maxepochs do

for i = 1 : P do
2.1: Find winner neuron Na according to Equation (9) and increase times that neuron

Na is winner by 1
2.2: Find second best matching neuron Nb (using Equation (9) and excluding Na from

the search)
2.3: Age of all edges between Na and its neighbors increased by one
2.4: Connect Na with Nb (if they were not already connected)
2.5: Reset age between Na and Nb to zero

end for
2.6: Use Equations 11-12 to update neuron weights.
2.7: Use Equations 13-14 to update neuron positions.
2.8:
if neurons need to be added/removed (check agemax and tadd) then add/remove neurons

and update accordingly
end if
2.9:
if error does not change significantly then end training phase
elseContinue
end if

end for
3. Smoothing phase
3.1: Fine-tune weights and deliver the AMSOM neuron weight vectors and positions
3.2: Utilize edge connectivity matrix E and similarity between neuron weight vectors wi in
order to find the optimal number of clusters

Fig. 3: AMSOM algorithm overview.

8 Gerasimos Spanakis, Gerhard Weiss

3.1 Phase I: AMSOM Initialization

Grid Structure and Size. The first step of AMSOM algorithm is to define the initial
grid structure (as the classic SOM). This process facilitates training time in contrast to
starting from a small-size structure and building on that as other approaches do [40]. It
is also in agreement with the neural development which suggests that nearly all neural
cells used through human lifetime have been produced in the first months of life [13].
This overproduction of neuron cells is thought to have evolved as a competitive strategy
for the establishment of efficient connectivity [10].

Having this in mind, the initial structure of SOM is determined. Several empirical
rules [34] suggest that the number of neurons should be 5 ·

√
N where N is the number

of patterns in the dataset. In this case, the two largest eigenvalues of the training data
are first calculated, then the ratio between side lengths of the map grid is set to the ratio
between the two maximum eigenvalues. The actual side lengths are finally set so that
their product is close to the number of map units determined according to [40] rule.
The eigenvalues ratio shows how well the data is flattened and elongated [14]. At this
point a more precise determination of the number of neurons is not essential, since this
number will be fine tuned during the training process. Initially, neurons are connected
with their neighbors following the idea of Figure 2 using a rectangular or hexagonal
grid. For example, if the algorithm suggests that the initial grid of the AMSOM should
be 5x4 (let’s suppose rectangular), every neuron has 4 neighbors (except the marginal
ones). Figure 4 demonstrates two different topologies, a rectangular and a hexagonal
one with the corresponding connections between neurons.

Fig. 4: Initial grid example (hexagonal & rectangular).

Visual Clustering using Adaptive Moving Self-Organizing Maps (AMSOM) 9

Vector, Matrix and Parameters Initialization. For each neuron the following are
defined and initialized accordingly:

– Neuron vector (weight vector, wi): It is the same as the classic SOM (see Equa-
tion (2)) and shows the representation of the neuron in the feature (input) space.
Initialization of neuron vectors is random according to literature standards.

– Neuron position (position vector, ri): Depending on the output space (mostly it is
two-dimensional), it’s a vector that shows the position of the neuron. Initial position
vectors are equal to the positions of the neurons in the grid, i.e., in Figure 4 one can
see the coordinates of neurons according to the structure (hexagonal or rectangular).

Since the structure of the grid is subject to changes during training, we need to
keep track of the neighbors of each neuron. There is the possibility that some neurons
which where connected in the initial grid become disconnected after some time (or
vice versa). In order to keep track of these changes we introduce the orthogonal and
symmetrical matrices E and A (both size M×M) where E(p,q) shows if neurons p and
q are connected (0 translates to no connection, 1 translates to connected neurons) and
A(p,q) shows the age of edge (as implied by E(p,q)) between neurons p and q: This
will be used in order to determine which neurons had incidental connections to other
neurons or strong connections as training moves forward. When A(p,q) is 0 that means
that neurons p and q were closest neighbors at current epoch but any other value (i.e.,
2) implies that neurons p and q were closest neighbors some epochs before (i.e., 2). An
example of matrices E and A is seen in Figure 5.

A =

0 2 4 0
2 0 0 0
4 0 0 1
0 0 1 0

 ,E =

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

Fig. 5: Example of matrices A and E describing connections between AMSOM neurons.

In this example, neurons number (M) is 4 and connectivity matrix E shows how
neurons are connected to each other (as implied by the graph). Age matrix A shows
how many epochs an edge has ‘survived’: Connection between neuron #1 and #2 has
age 2 whereas connection between neuron #2 and #4 has age 0. Notice that age 0 can
either mean that neurons are not connected, like neurons #1 and #4 or that neurons are
connected at this current epoch (so their connection is ‘recent’), like neurons #2 and #4.

Also, at this stage the growing threshold GT of the map is defined as a function
of data dimension (D) and a spread factor (SF) defined by the user. Formula used is
GT = −ln(D)× ln(SF) (from [1]). Generally, a SF value of 0.5 always yields good
results but its fine tuning is up to the user requirements and the dataset structure.

10 Gerasimos Spanakis, Gerhard Weiss

3.2 Phase II: Training

Weight and Position Updating For the weight learning of neurons, the SOM batch
algorithm is utilized, as it was given in Equations 7-10, which are repeated here for
clarity.

wi(t +1) =
∑ j n j(t) ·h ji(t) · x̃ j(t)

∑ j n j(t) ·h ji(t)
(11)

h ji(t) = exp
(
−
||r j− ri||2

σ(t)2

)
(12)

where:

– wi(t +1) marks neurons i updated weight (at epoch t +1),
– t marks current epoch and t +1 marks the next epoch,
– n j(t) marks the number of patterns that are assigned to neuron j,
– h ji(t) marks the neighborhood function and is a measure of how close are neuron j

and neuron i,
– x̃ j(t) is the mean feature vector of all x that are assigned to neuron j at epoch t,
– r j,ri are the position vectors (in the output space) for neurons j and i,
– σ(t) is the adaptation factor, decreasing through training

Building on top of this, at the end of each epoch, the neuron position vectors are
adjusted in a similar manner to the SOM training algorithm. In more detail, at the end
of each epoch and after the neuron weight vectors update is over, the distances between
the neuron vectors (wi) are computed. These distances show how close neurons are (in
the input space) and can be used as a measure in order to update neuron positions (in
the output space). This is achieved through the following Equations:

ri(t +1) = ri(t)+α(t) ·
∑ j n j(t) ·δ ji(t)(r j(t)− ri(t))

∑ j n j(t) ·δ ji(t)
(13)

δ ji(t) = exp
(
−
||w j−wi||2

γ×σ(t)2

)
(14)

where:

– t, n j(t) were defined in Equations 11 and 12,
– α(t) denotes the learning rate at epoch t and controls the rate that positions of

neurons are moving,
– δ ji(t) is a neighborhood function denoting how close neurons j and i are (during

time t and is based on their distance in the input space (i.e., distance computed
based on their vectors wi),

– γ is a parameter that controls the neighborhood shrinking as a fraction of σ which
was used in Equation (12)

Visual Clustering using Adaptive Moving Self-Organizing Maps (AMSOM) 11

Notice the similarity of δ ji with h ji: both are neighborhood functions and are used
to determine how close two neurons are but the first one does so using their distances
in the feature (input) space while the latter does so using their distances in the output
space (map).

Equation (13) will adjust neuron’s i position vector according to the neurons which
proved winners for more patterns in its neighborhood and less (or even none) according
to neurons which were winners for few patterns (or none). This process enhances the
concept of neighborhood around the neurons that attract more patterns and also allows
to cover any empty spaces in the data representation. It is expected to improve the
training speed, since position updating will lead to more accurate position vectors that
will be used for the next training epoch and leads to more insightful representations of
the neurons in the output space.

Learning rate α(t) can also be set to a small value 0.01 since the neighborhood
function controls well the percentage of change in the position vectors. It was selected
to update the position vectors with this hybrid on-line-batch SOM rule, due to the fact
that output space is much smaller (in most SOM applications) than the input space, so
in many cases minor adjustments (than major repositioning of the neurons) are more
necessary in order to guarantee satisfactory training but also representation. Also note
that the parameter γ which controls neighborhood shrinking for position can also control
how fast the map will be updated and how neurons are going to affect each other.

Adding and Removing Neurons During the weight updating process, for each input
(pattern) the best matching neuron is determined (Na) and also the second best matching
(Nb). At this step the age of all edges between Na and its neighbors is increased. After-
wards, Na is connected to Nb. If both of the neurons were already connected then their
age is reset to zero. This is another step that implements the competitive learning rule,
since for each new pattern, a new edge connecting the two closest neurons is drawn.
This process is repeated for all patterns as they are presented to the AMSOM. Finally,
at the end of the epoch for each incident edge between neurons (i, j), if A(i, j)≥ agemax,
then this edge is removed. agemax can be set to a value not small enough (so as to avoid
many disconnections) but also not big enough (so as to avoid having a fully connected
grid). In our experiments this value was 30. If either of the implicated neurons becomes
isolated from the remainder of the structure, then it is removed from the grid. The aim
here is to remove edges that are no longer useful because they are replaced by younger
edges that are created during the AMSOM training. That is the reason that each time
two neurons are connected by an edge, then its age is reset to zero. By this process,
neurons that were connected incidentally -especially at the beginning of the training
when the map is still under forming- are disconnected after some epochs. This process
has two distinct advantages: (a) self-organization and competitive learning will allow
after some epochs the removal of redundant number of neurons and (b) adjustment of
connections between neurons so as to enhance topological properties of the dataset.
An example of a removal of a neuron is shown in Figure 6 along with the necessary
adjustments to matrices A and E.

Also, there is the possibility that after some epochs (tadd), new neurons are added.
The criterion is based on the training progress and when an addition happens, then

12 Gerasimos Spanakis, Gerhard Weiss

Fig. 6: The process of removing neurons in a part of AMSOM: With agemax set to 30,
neuron 4 is disconnected from neuron 3 and neuron 1 is disconnected from neuron
2 (notice that matrices A and E are updated accordingly). Neuron 4 is left with no
connections so it is removed.

new neurons can be added only after a number of epochs (tadd) in order to allow weight
adaptation of the map, before evaluating current structure. First step is to spot the neuron
Nu with the largest quantization error. A new neuron will be added, if its quantization
error is higher than GT , where GT is the growing threshold of the map: A high value
for GT will result in less spread out map and a low GT will produce a more spread
map. If the quantization error satisfies the above condition then its Voronoi region is
considered to be under-represented and therefore a new neuron has to be added to share
the load of the high-error-valued neuron.

Regarding the new neuron that will be added, we follow the the biological process
of ‘cell division’ [33]. By this way the neuron with the highest quantization error is
‘splitted’ to two new neurons (instead of just adding one new neuron somewhere at
random with no connections at all). Both new neurons preserve the same connectivity
(and also they are connected to each other) with the original neuron, thus we achieve
a preservation of behavioral link between the parent and the offspring. Regarding the
exact position of the two neurons the following process is followed: Neuron with the
largest error among Nu’s neighbors is spotted (let it be Nv). One neuron will preserve
Nu’s position and the other one will be placed in the middle between Nu and Nv. In
detail, weights and positions of the two new neurons (u1 and u2) are calculated using
the following Equations:

wu1 = (1+β)×wu (15)

wu2 =−β×wu (16)

ru1 = ru (17)

ru2 =
ru + rv

2
(18)

where wu refers to the weight vector of neuron u (neuron that is splitted) and β is a
mutation parameter which can take either a fixed or random value according to a certain
distribution rule (following [33]). In any case, value of β has to be chosen small in order
to avoid a large change both in network topology but also in the weight vectors. In this
paper, β takes a random value according to a Gaussian distribution with a mean of zero
and variance of one. New neurons retain the same connectivity to other neurons as the
parent neuron but age weights are zeroed. The process of adding a new neuron (along
with any changes in matrices E and A) is described in Figure 7.

Visual Clustering using Adaptive Moving Self-Organizing Maps (AMSOM) 13

Fig. 7: The process of adding new neurons in a part of AMSOM: Nu is highlighted as
the neuron with the highest error and Nv is the neuron among its neighbors with the
largest error. Neurons N1 and N2 are added instead of Nu, matrices E and A are updated
accordingly and weight/position vectors are determined by Equations 15-18.

It has to be pointed out that there is the possibility that a neuron would be removed
from a region of the map and to be added in another region (removing and adding
neurons are consecutive processes). This comes to agreement with several theories in
neural organization, suggesting that cortical regions can adapt to their input sources and
are somewhat interchangeable or ‘reusable’ by other modalities, especially in vision- or
hearing-impaired subjects [41].

Architecture Adaptation and Termination Criterion As it is described before, initial
structure of AMSOM is adapted through learning and training in order to find what is
optimal for the number of neurons, their weights and their connections. The adaptation
process starts by training the initial structure of AMSOM. When the criteria of adding
or removing neurons are satisfied, then the network is adapted. In order to maintain
(as possible) the initial structure (i.e., rectangular or hexagonal or any other lattice se-
lected), after this adaptation process we re-evaluate all connections of all neurons and
make sure that each neuron has at most Q neighbors (where Q is decided in the begin-
ning, i.e., in the case of rectangular lattice, Q = 4): This can be ensured by checking
edge matrix E after each epoch and if a neuron is found to have more than Q connec-
tions then only the Q-‘recent’ are kept (utilizing age of edges in matrix A). This process
is presented in Figure 8.

Fig. 8: Maintaining the structure of AMSOM: With Q = 4 (i.e., a rectangular grid) neu-
ron 4 is connected to five neurons, so it’s connection with neuron 6 (oldest connection)
is removed.

14 Gerasimos Spanakis, Gerhard Weiss

By this training scheme, AMSOM adapts simultaneously the structure of the map
(number of neurons and connections) and the weight vectors. Removing and adding
neurons occur when different criteria are met, so they can be applied in any sequence,
depending on when the criteria are satisfied. By applying these operations repeatedly,
AMSOM is expected to find a near-optimal structure and representation of a given
dataset.

Finally, like every SOM algorithm, AMSOM has an upper limit of epochs that train-
ing takes place. This number is set to 1000 but there is also a premature termination
criterion depending on the mean quantization error change between two consecutive
epochs. Thus, if mqe(t)−mqe(t−1)< ε1 where ε1 is a small value (like 1E−06) then
the map has reached the desired size (according to the GT provided) and training is
terminated.

3.3 Phase III: AMSOM Finalization and Clustering of the map

Final phase of AMSOM happens when learning is complete and structure of the net-
work is not any more changing. No neurons are added or removed at this phase and
no connections between neurons are added or removed but weight and position vector
adaptation is continued with a lower rate. Purpose of this process is to smooth out any
quantization error and fine tune weights and positions of the neurons, especially for
neurons added at the latter epochs. For this purpose, neighborhood function (both for
Equations 11 and 13 is constrained only to the immediate neighborhood and learning
rate α(t) in Equation (13) is set to 0.001 (even smaller than in phase II). Phase III is
concluded when there is no significant change in change in mean quantization error
(i.e., when mqe(t)−mqe(t− 1) < ε2), where ε2 is set to a smaller value than ε1 (like
1E−10).

In order to effectively compute the number of clusters that are discovered by the
AMSOM algorithm, we take into account the graph structure that is created during
training, which is represented by matrix E. The result is a segmented map that repre-
sents the clusters. Literature methods for SOM clustering involve the use of a clustering
algorithm like K-means or Hierarhical Agglomerative Clustering (HAC) [39] or Spec-
tral Clustering [38] but disadvantage of these approaches is that they require additional
(sometimes time consuming) steps after the SOM training and additional parameters to
be determined (e.g. number of clusters K or a distance measure to be used [7, 19, 42]).
These approaches accurately extract the clusters when they are well separated but that
is not the case when cluster structure is not that direct. Finally, other approaches utilize
graph theoretic methods for partitioning the map but these approaches also rely on ex-
tra steps after the end of SOM training [35]. On the other hand, our proposed approach
has two distinct advantages over traditional SOM clustering algorithms: (a) The graph
construction is inherent to the algorithm, since matrices E and A are computed during
the training process and (b) involves a simple heuristic process with only one parameter
which is automatically determined.

The map to be clustered is represented by an undirected adjacency graph G(V,E);
where V represents the set of neurons after the end of training and E is the edge adja-
cency matrix as formed during training but we take into account the similarity between

Visual Clustering using Adaptive Moving Self-Organizing Maps (AMSOM) 15

adjacent neurons in terms of the input space (weight vectors). The exact steps of the
algorithm are the following:

– Given a trained AMSOM map and matrix E, compute the distance between any
adjacent neurons i and j (E(i, j) = 1 for adjacent neurons and dist(i, j) = ||wi−
w j||2 as used in Equation 14),

– For each adjacent neuron the edge is considered adjacent when dist(i, j)≤ v, where
v is a threshold,

– For each edge inconsistency (dist(i, j)> v), a null connection is considered in po-
sition (i, j) of the graph (E(i, j) is set to 0), otherwise we retain 1,

– A different code is assigned to each connected neuron set.

The threshold v is automatically set to the mean value of distance between all neu-
rons (i, j) ∈ V , so it is not mandatory to be determined, unless there are specific user
requirements: a larger value of v will to less clusters whereas a smaller value will lead
to more clusters. The result is a partitioned map, which indicates the number of clusters.
Obviously, after this process the input patterns can be projected into the map (by finding
the best matching neuron) and the label of the neuron can be assigned to each input.

4 Experiments

AMSOM performance has been tested with several literature datasets in order to eval-
uate both map quality (in terms of topology preservation) and the number of epochs
needed to converge. Quantization Error (QE) and Topographic Error (TE) were used as
intrinsic measures of evaluation (for more details readers are encouraged to read [4]).
All (non-textual) datasets were provided by the UCI repository 1, except the CLUS-
TER dataset which is a simple and random but large two-dimensional dataset with four
groups. In order to test the scalability of the approach for larger datasets, we also tested
AMSOM to a large textual dataset 2. This dataset involves 4 classes from the RCV1
dataset and counts 9625 documents with 29992 discrete features (which correspond to
different words, since we are using the bag-of-words model). All datasets used with
their characteristics are presented in Table 1.

Each dataset is shuffled and split to training, testing and validation set (60%, 20%
and 20% respectively). Each experiment was performed 20 times and the results pre-
sented here are average over these runs (deviations were small and are not presented
here). Results for AMSOM QE and TE (compared to classic SOM) along with the
number of neurons used by each model are presented in Table 1. From this Table it is
obvious that AMSOM’s performance is much better than classic SOM. AMSOM starts
from the same number of neurons as classic SOM but by removing and adding neurons
when necessary reaches a number which is suitable to represent the dataset. Both QE
and TE are improved using AMSOM algorithm and this improvement is more signif-
icant in TE because of the neuron position changing which allows the map to better
adjust to the dataset.

1 http://archive.ics.uci.edu/ml/
2 http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html

16 Gerasimos Spanakis, Gerhard Weiss

Table 1: Quality of AMSOM compared to classic SOM and number of neurons for
different datasets

Characteristics QE TE # of neurons
Dataset name Instances Features Classes AMSOM SOM AMSOM SOM AMSOM SOM

CLUSTER 1000 3 4 0.108 0.1090 0.028 0.063 121 154
IRIS 150 4 3 0.1047 0.3930 0.009 0.013 40 66

WINE 178 13 3 1.7394 1.8830 0.008 0.017 42 66
IONOSPHERE 351 35 2 2.5697 2.9418 0.0026 0.0057 78 91

CANCER 699 9 2 0.7941 0.9456 0.0145 0.0286 103 132
GLASS 214 10 7 0.9797 1.1178 0.0041 0.0093 43 72
RCV1-4 9625 29992 4 1.6937 2.3251 0.0864 0.1232 431 500

(a) Neuron grid (b) Neuron classes

Fig. 9: Visualization results for CLUSTER dataset (4 classes).

Visualization results for four of the small-scale datasets are presented in Figures
9 through 12. In these figures final positions of the neurons and their final positions
are represented. For each neuron the process described in Section 3.3 was followed in
order to determine the optimal number of clusters but also the class that each neuron
belongs to. For the simple CLUSTER dataset it is obvious that the four classes are
identified and the grid structure can effectively represent their relations. For the IRIS
dataset one class is completely identified whereas the other two (which are more sim-
ilar) are also highlighted. Also notice that neurons that belong to the same class are
mostly connected with each other on the grid and only some spontaneous connections
between classes exist. Ability of AMSOM when it comes to multiple class can be seen
in GLASS dataset where it successfully manages to highlight all seven classes and sep-
arate the corresponding neurons accordingly. Finally, for the more demanding dataset
of IONOSPHERE (see the relatively higher QE), AMSOM manages to differentiate in
a great degree the two classes. Neuron grids in all figures also reveal that the percentage
of dead units (neurons that do not represent any pattern) is significantly small, which
is an improvement to the classic SOM algorithm (fewer inactive neurons). Finally, vi-
sualization of the results on the RCV1-4 dataset is presented in Figure 13(a). Graph
structure is not presented due to the many connections which make the graph not read-
able in such a format. Moreover, we also conducted a series of experiments in order to

Visual Clustering using Adaptive Moving Self-Organizing Maps (AMSOM) 17

(a) Neuron grid (b) Neuron classes

Fig. 10: Visualization results for IRIS dataset (3 classes).

(a) Neuron grid (b) Neuron classes

Fig. 11: Visualization results for GLASS dataset (7 classes).

determine handling unbalanced classes. We used uneven number of patterns per class
and results were also promising. These can be found in Figure 13(b).

Regarding the spread factor (SF) which controls the growing threshold (GT), a
value 0.5 was chosen for this series of experiments because for all datasets it yielded
satisfactory results. In the general case that there is no prior knowledge on the data
examined, a low value of SF (0-0.3) will allow highlighting of the most significant
clusters.

Regarding γ parameter of Equation (13) it was found that it can effectively control
the spreading or shrinking of neighborhood during position updating and by this way
creating more isolated or more connected clusters. Several experiments were conducted
(not presented here due to space limitations) and showed that small values of gamma (1
till 10) produce the best results for all datasets. The higher the γ, the better topographic
preservation (reduced TE) but the quantization error (QE) rises. Also, high values of γ

tend to increase the number of neurons that remain unused (dead units) whereas values
close to 100 tend to approach the classic SOM algorithm (position updating is minimal).

18 Gerasimos Spanakis, Gerhard Weiss

(a) Neuron grid (b) Neuron classes

Fig. 12: Visualization results for IONOSPHERE dataset (2 classes).

(a) Original RCV1-4 (balanced classes) (b) RCV1-4 unbalanced example

Fig. 13: Visualization results for RCV1-4 dataset (4 classes).

Two more parameters that need to be adjusted are agemax and tadd . For both param-
eters, 30 epochs were found to be optimal, which is sound given the fact that 30 epochs
is enough time to check whether current structure performs well (reduced QE) or if
adjustments are needed (adding/removing neurons).

Complexity of the developed algorithm is slightly increased due to the need for up-
dating matrices A and E and also due to the more flexible structure. This overhead is
counterbalanced by the faster training process (in all experiments there was a decrease
in epochs number around 20%) since updating neuron positions clearly improves train-
ing time (requires less epochs) and for memory intensive tasks like the processing of
textual datasets algorithm performed fast enough.

5 Conclusion

In this paper we presented AMSOM, a novel algorithm to perform visual clustering
which extends SOM competitive learning in the output space. Neuron positions may
change during this “double” training process and the number of neurons can be ad-
justed (addition or removal). These innovations allow a more flexible structure grid

Visual Clustering using Adaptive Moving Self-Organizing Maps (AMSOM) 19

which has the ability to represent the dataset more efficiently. Experimental results on
different datasets (with different characteristics in regard to dimensionality, number of
latent classes and origin of the data) show improvement in the performance of AM-
SOM against classic SOM algorithm. AMSOM produces better reference vectors by
reducing the Quantization Error, topology is preserved through the neuron moving by
significantly reducing the Topographic Error and the visualization result matches as
much as possible the original dataset partitions. Also, AMSOM produces fewer nodes
with no significant effect while at the same time it reduces required number of train-
ing epochs. Finally, AMSOM provides a framework to directly estimate the optimal
number of clusters in the dataset with accurate quantitative and qualitative results.

AMSOM provides new insights on how to handle large volumes of otherwise in-
comprehensible data covering a wide range of human endeavor (science, business,
medicine, healthcare, etc.). Obtained results highlight the effective use of competitive
learning and self-organization in neural networks and demonstrate that AMSOM can
be used with a big variety of datasets. Further work involves work in the following di-
rections: firstly, evaluate the visualization result and its ability to facilitate discovery
process, secondly, evaluate the algorithm in even larger datasets and more specifically
explore whether statistical properties of the original data are preserved and finally, ex-
plore ways to improve performance in terms of time and space requirements.

References

1. Damminda Alahakoon, Saman K Halgamuge, and Bala Srinivasan. Dynamic self-organizing
maps with controlled growth for knowledge discovery. Neural Networks, IEEE Transactions
on, 11(3):601–614, 2000.

2. Gennady Andrienko, Natalia Andrienko, Salvatore Rinzivillo, Mirco Nanni, Dino Pedreschi,
and Fosca Giannotti. Interactive visual clustering of large collections of trajectories. In
Visual Analytics Science and Technology, 2009. VAST 2009. IEEE Symposium on, pages 3–
10. IEEE, 2009.

3. Thouraya Ayadi, Tarek M Hamdani, and Adel M Alimi. MIGSOM: multilevel interior grow-
ing self-organizing maps for high dimensional data clustering. Neural processing letters,
36(3):235–256, 2012.

4. H-U Bauer, Michael Herrmann, and Thomas Villmann. Neural maps and topographic vector
quantization. Neural networks, 12(4):659–676, 1999.

5. Justine Blackmore and Risto Miikkulainen. Incremental grid growing: encoding high-
dimensional structure into a two-dimensional feature map. In Neural Networks, 1993., IEEE
International Conference on, pages 450–455, 1993.

6. Maria Bortman and Mayer Aladjem. A growing and pruning method for radial basis function
networks. Neural Networks, IEEE Transactions on, 20(6):1039–1045, 2009.

7. Dominik Brugger, Martin Bogdan, and Wolfgang Rosenstiel. Automatic cluster detection in
kohonen’s som. Neural Networks, IEEE Transactions on, 19(3):442–459, 2008.

8. Pierrick Bruneau and Benoit Otjacques. An interactive, example-based, visual clustering
system. In 2013 17th International Conference on Information Visualisation, pages 168–
173. IEEE, 2013.

9. Michele Ceccarelli, Alfredo Petrosino, and Roberto Vaccaro. Competitive neural networks
on message-passing parallel computers. Concurrency: Practice and Experience, 5(6):449–
470, 1993.

20 Gerasimos Spanakis, Gerhard Weiss

10. Jean-Pierre Changeux and Antoine Danchin. Selective stabilisation of developing synapses
as a mechanism for the specification of neuronal networks. Nature, 264(5588):705–712, 12
1976.

11. Guido Deboeck and Teuvo Kohonen. Visual explorations in finance: with self-organizing
maps. Springer Science & Business Media, 2013.

12. Kevin Doherty, Rod Adams, and Neil Davey. TreeGNG-hierarchical topological clustering.
In ESANN, pages 19–24, 2005.

13. John E Dowling. The Great Brain Debate: Nature Or Nurture? Princeton University Press,
2007.

14. Pablo A Estévez, José C Prı́ncipe, and Pablo Zegers. Advances in Self-Organizing Maps: 9th
International Workshop, WSOM 2012 Santiago, Chile, December 12-14, 2012 Proceedings.
Springer Science & Business Media, 2012.

15. Jean-Claude Fort. Soms mathematics. Neural Networks, 19(6):812–816, 2006.
16. Bernd Fritzke. Growing cell structuresa self-organizing network for unsupervised and super-

vised learning. Neural networks, 7(9):1441–1460, 1994.
17. Bernd Fritzke. Growing grida self-organizing network with constant neighborhood range

and adaptation strength. Neural Processing Letters, 2(5):9–13, 1995.
18. Bernd Fritzke et al. A growing neural gas network learns topologies. Advances in neural

information processing systems, 7:625–632, 1995.
19. Maria Halkidi and Michalis Vazirgiannis. A density-based cluster validity approach using

multi-representatives. Pattern Recognition Letters, 29(6):773–786, 2008.
20. Hong-Gui Han and Jun-Fei Qiao. A structure optimisation algorithm for feedforward neural

network construction. Neurocomputing, 99:347–357, 2013.
21. Victoria J Hodge and Jim Austin. Hierarchical growing cell structures: TreeGCS. Knowledge

and Data Engineering, IEEE Transactions on, 13(2):207–218, 2001.
22. Mohammad Islam, Abdul Sattar, Farnaz Amin, Xin Yao, and Kazuyuki Murase. A new

adaptive merging and growing algorithm for designing artificial neural networks. Systems,
Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 39(3):705–722, 2009.

23. Teuvo Kohonen. Self-organized formation of topologically correct feature maps. Biological
cybernetics, 43(1):59–69, 1982.

24. Teuvo Kohonen. The’neural’phonetic typewriter. Computer, 21(3):11–22, 1988.
25. Teuvo Kohonen. Things you haven’t heard about the Self-Organizing Map. In Neural Net-

works, 1993., IEEE International Conference on, pages 1147–1156. IEEE, 1993.
26. Teuvo Kohonen. Self-organizing Maps, vol. 30 of Springer Series in Information Sciences.

Springer Berlin, 2001.
27. Teuvo Kohonen. Self-organization and associative memory, volume 8. Springer, 2012.
28. Krista Lagus, Timo Honkela, Samuel Kaski, and Teuvo Kohonen. WEBSOM for textual data

mining. Artificial Intelligence Review, 13(5-6):345–364, 1999.
29. Shin-yee Lu. Pattern classification using self-organizing feature maps. In 1990 IJCNN

International Joint Conference on, pages 471–480, 1990.
30. Stephen Marsland, Jonathan Shapiro, and Ulrich Nehmzow. A self-organising network that

grows when required. Neural Networks, 15(8):1041–1058, 2002.
31. Filip Mulier and Vladimir Cherkassky. Learning rate schedules for self-organizing maps. In

Pattern Recognition, 1994. Vol. 2-Conference B: Computer Vision & Image Processing.,
Proceedings of the 12th IAPR International. Conference on, volume 2, pages 224–228. IEEE,
1994.

32. Pramod L Narasimha, Walter H Delashmit, Michael T Manry, Jiang Li, and Francisco Mal-
donado. An integrated growing-pruning method for feedforward network training. Neuro-
computing, 71(13):2831–2847, 2008.

33. Stevan V Odri, Dusan P Petrovacki, and Gordana A Krstonosic. Evolutional development of
a multilevel neural network. Neural Networks, 6(4):583–595, 1993.

Visual Clustering using Adaptive Moving Self-Organizing Maps (AMSOM) 21

34. Young-Seuk Park, Juliette Tison, Sovan Lek, Jean-Luc Giraudel, Michel Coste, and Franois
Delmas. Application of a self-organizing map to select representative species in multivariate
analysis: A case study determining diatom distribution patterns across France. Ecological
Informatics, 1(3):247 – 257, 2006. 4th International Conference on Ecological Informatics.

35. Do Phuc and Mai Xuan Hung. Using som based graph clustering for extracting main ideas
from documents. In Research, Innovation and Vision for the Future, 2008. RIVF 2008. IEEE
International Conference on, pages 209–214. IEEE, 2008.

36. Andreas Rauber, Dieter Merkl, and Michael Dittenbach. The growing hierarchical self-
organizing map: exploratory analysis of high-dimensional data. Neural Networks, IEEE
Transactions on, 13(6):1331–1341, 2002.

37. Gerasimos Spanakis, Georgios Siolas, and Andreas Stafylopatis. DoSO: a document self-
organizer. Journal of Intelligent Information Systems, 39(3):577–610, 2012.

38. Kadim Taşdemir. Spectral clustering as an automated som segmentation tool. In Advances
in Self-Organizing Maps, pages 71–78. Springer, 2011.

39. Juha Vesanto and Esa Alhoniemi. Clustering of the self-organizing map. Neural Networks,
IEEE Transactions on, 11(3):586–600, 2000.

40. Juha Vesanto, Johan Himberg, Esa Alhoniemi, and Juha Parhankangas. SOM toolbox for
Matlab 5. Citeseer, 2000.

41. Van J Wedeen, Douglas L Rosene, Ruopeng Wang, Guangping Dai, Farzad Mortazavi, Patric
Hagmann, Jon H Kaas, and Wen-Yih I Tseng. The geometric structure of the brain fiber
pathways. Science, 335(6076):1628–1634, 2012.

42. Sitao Wu and Tommy WS Chow. Clustering of the self-organizing map using a clustering va-
lidity index based on inter-cluster and intra-cluster density. Pattern Recognition, 37(2):175–
188, 2004.

43. Shih-Hung Yang and Yon-Ping Chen. An evolutionary constructive and pruning algorithm
for artificial neural networks and its prediction applications. Neurocomputing, 86:140–149,
2012.

