
360

Intelligent AgentsIntelligent Agents
Gerhard Weiss, SCCH GmbH, Austria

Lars Braubach, University of Hamburg, Germany
Paolo Giorgini, University of Trento, Italy

Foundations of Intelligent Agents 360
The Intelligent Agents Perspective on

Engineering 361
Architectures for Intelligent Agents 362

Internal Agent Architectures 363
Social Agent Architectures 363

Development Methodologies 364
Overall Characterization 364
Selected AO Methodologies 365

Tools, Platforms, and Programming
Languages (Frameworks) 366
Middleware Platforms 367

Reasoning Platforms 368
Social Platforms 369

Application Areas 369
Scope of Application 369
Application Domains 370

Conclusion 370
Glossary 370
Cross References 371
References and Suggested Readings 371
Web Pointers to Further Important

Resources 372

FOUNDATIONS OF INTELLIGENT
AGENTS
The agent concept originated in artifi cial intelligence and
especially in the fi eld of agent and multiagent technology
(Weiss 1999; Wooldridge 2002). Thus the roots of the con-
cept extend back to the 1950s. In the past decade the agent
concept has been successfully established in various fi elds
of computer science, especially in the fi elds of software and
software engineering. The term agent was long the subject
of intensive discussion and efforts toward precise specifi ca-
tion, which continue to some extent today. Recent years have
seen broad acceptance of the following notion of agency:

An intelligent agent is a self-contained software/hard-
ware unit that can handle its tasks in a knowledge-based,
fl exible, interactive, and autonomous way.

The following ideas underlie these key attributes of an
agent as formulated above:

Flexibility. An agent can act reactively as well as proac-
tively. Reactive means that the agent reacts in reason-
able time and in an appropriate way to changes in its
environment and to changes in the requirements placed
on it. Proactive means that the agent acts with predic-
tion, planning, and goal orientation. Flexibility, consist-
ing of reactivity and proactivity, is thus the capability to
handle possibly unexpected events and simultaneously
to act with planning and goal orientation.

Interactivity. An agent can interact with its environ-
ment—especially with human actors and with other
agents. Such interactions can be on a very high level
(i.e., they can be markedly communication- and knowl-
edge-intensive) and they serve the purpose of coordi-
nation with third parties, that is, the coordination of
activities and the handling of mutual dependencies.
Here we mean coordination in the sense of cooperation
(joint pursuit of possibly shared plans and goals) as

•

•

well as in the sense of competition (pursuit of partially
or even wholly exclusive goals). Examples of forms
of interaction that are considered typical of agents
include negotiation and confl ict resolution in the realm
of cooperative planning activities and competitive sales
processes. Interactivity requires a precise interface that
normally overshadows all the internals of the agent.
Thus in general interactivity designates all the (higher)
social—communicative, cooperative, and competitive—
capabilities of an agent.

Autonomy. In the realm of its task processing, an agent
can decide largely autonomously and without consulta-
tion or coordination with third parties (human users
or other agents) which activities to execute. This fre-
quently requires or implicitly assumes that the deci-
sions to be made by the agents are nontrivial, that is,
that they may require extensive knowledge processing
or that the effects are signifi cant. An agent has a certain
scope of decision-making authorization and freedom of
action and so is subject to control by third parties only
to a restricted degree.

Often the above notion of an agent is extended and
concretized by associating further attributes with agents.
The most prominent of these attributes include:

Situatedness/embeddedness. An agent is connected to
its environment via close sensory and/or actuatory
coupling.

Learning capability/adaptivity. An agent independently
optimizes its functionality with respect to the tasks that
are assigned to it, which may change over time.

Other attributes that the literature often designates
as elementary for agents and that are noteworthy from a
software engineering viewpoint include mobility, persist-
ency, rationality, and self-containment.

•

•

•

CH022.indd 360 11/21/09 2:00:12 AM

 THE INTELLIGENT AGENTS PERSPECTIVE ON ENGINEERING 361

The remainder of this chapter is structured as fol-
lows. The section on The Intelligent Agents Perspective
on Engineering describes the agent-oriented perspec-
tive on software and systems engineering. The section
on Architecture for Intelligent Agents describes avail-
able approaches to agent architectures. The section on
Development Methodologies overviews the state of the art
in systematically developing systems from the perspective
of agent orientation. The section on Tools, Platforms, and
Programming Languages (Frameworks) presents impor-
tant frameworks for building agent applications, includ-
ing tools, platforms, and programming languages. The
section on Application Areas characterizes applications
and application areas that are particularly suited for the
agent-oriented approach.

THE INTELLIGENT AGENTS
PERSPECTIVE ON ENGINEERING
One of the great steps forward in software and systems
engineering was the evolution of fundamental system
views—paradigms—that support successful, systematic,
and effi cient development of software systems. Examples
of such paradigms include structure orientation, object
orientation, component orientation, aspect orientation,
model orientation, architecture orientation, pattern ori-
entation, task orientation, and (usually in the context of
business information systems) process orientation. Agent
orientation, based on the notion of intelligent agents, is
a new member of this list of paradigms (Jennings 2000).
In the following, we describe fundamental qualitative
attributes of agent orientation that confi rm a very high
potential for utilization and acceptance in software and
systems engineering.

System view and abstraction level. Agent orientation
suggests the metaphor of a software system as a human
organization and thereby opens an innovative, high-
quality, and at the same time intuitively comprehensible
view of software. This paradigm is innovative and high-
quality because it enables viewing software design as
organizational design; for a software developer, this opens
a gold mine of organization theory concepts and tech-
niques that can be applied in software engineering. The
paradigm is intuitively comprehensible because organiza-
tional terminology is part of our everyday life; therefore
we have no problem in viewing a software system as an
organization (or as a combination of multiple organiza-
tions) in which software units (agents) handle tasks under
consideration of prescribed computation and behavioral
guidelines (rules, standards, laws, etc.) and for this pur-
pose negotiate autonomously, resolve (resource) confl icts,
dynamically form and dissolve superordinate organiza-
tional units (e.g., teams), play certain roles within these
superordinate units (e.g., resource manager, service pro-
vider), and assume certain obligations with their roles.

Especially characteristic of the agent-oriented system
paradigm is that it affords a new abstraction level that is
distinct from other paradigms. The step to this abstrac-
tion level conforms to a development that is refl ected in
higher programming languages and that is a necessary

prerequisite for programming in the large: the rise in the
degree of abstraction, away from the machine level and
to the problem level.

Complexity management. Software is inherently
complex and its complexity will continue to rise dramati-
cally as it has done in the past. A decisive criterion for the
evaluation of a software development approach is thus
its suitability for managing complexity. Four elementary
techniques for managing complexity are very important
in software engineering:

1. Decomposition. The reduction into smaller and thus
comprehensible parts that can then be developed
largely independently.

2. Abstraction. The creation of a model that encom-
passes signifi cant aspects while hiding unimportant
aspects.

3. Structuring. The specifi cation of (ordered) relation-
ships and (desired) mutual effects among the compo-
nents of the overall system.

4. Reuse. The systematic use of past results (docu-
ments and processes) from software projects in future
projects.

The intelligent agents perspective supports all four of
these techniques in a very natural way.

Autonomy as a system attribute. From the software
and systems engineering view, autonomy is the most strik-
ing and, in terms of effect, the most far-reaching attribute
of intelligent agents. This attribute, even if it seems radical
and revolutionary at fi rst glance, can be seen as the next
natural step in the evolution of generic engineering prin-
ciples. This is best seen in the software fi eld. Elementary
software units that have evolved up to now—monolithic
programs, modules, procedures, objects, components,
and services—demonstrate a rising degree of locality and
increasing encapsulation of data and state control. All
these software units have in common that their activation
can be forced via external events (e.g., the start command
by the user or the receipt of a message from another soft-
ware unit); the unit itself does not decide whether to acti-
vate upon such a message. Agent orientation overcomes
this restriction by providing the autonomy attribute to
additionally encapsulate the control over activation of
a software unit (self-activation over outside activation,
self-determination instead of foreign determination, and
self-responsibility rather than foreign responsibility).

The step to software autonomy not only is histori-
cally motivated but also refl ects practical requirements.
On the one hand, a number of applications indirectly
imply the necessity to equip software with autonomy. On
the other hand, autonomy is increasingly being required
directly as a system attribute almost by defi nition. For
example, it has become common to view a peer-to-peer
system as a self-organizing system of equal autonomous
units, and in the context of Web services, autonomy is
usually seen as an important attribute (in addition to the
attributes specifi ed in the W3C defi nition of Web services).
Compatibility. A decisive factor for the potential of a
new paradigm—or a view, a technique, a method, etc.—is

CH022.indd 361 11/21/09 2:00:13 AM

362 INTELLIGENT AGENTS

its compatibility with existing and established approaches.
Agent orientation is to a high degree compatible with other
approaches. In particular, the agent-oriented view does not
claim to displace or exclude other views.

The abstraction levels of agent-orientation and object-
orientation complement one another in a meaningful
way.

Agents and components share the attribute of self-con-
tainment and their focus on their interfaces, and the
agent concept can be seen as a specialization or gener-
alization (depending on viewpoint) of the component
concept.

Due to its focus on organizational structures (at the
level of individual agents), agent orientation has a close
relationship to architecture orientation.

With its focus on interactivity and thus on consequences
of coordinated actions, agent orientation has a funda-
mental commonality with process orientation.

Similar to task orientation, agent orientation empha-
sizes the importance of defi ning overall tasks (at
the actor level instead of the object level) and their
dependencies.

Thus agent orientation merges various core aspects
of other paradigms and also can be used in combination
with other approaches.

•

•

•

•

•

ARCHITECTURES FOR
INTELLIGENT AGENTS
In the context of multiagent systems two different kinds
of architectures can be distinguished. Internal agent
architectures determine the kinds of components an agent
consists of and additionally defi ne how these components
interact. An internal agent architecture therefore has the
main purpose to implement a reasoning process that
ultimately leads to agent actions. Many different agent
architectures have been developed until today. Among
them are simple architectures, such as those inspired by
lower animals like ants as well as also very sophisticated
architectures, which inter alia build on explanations of
the human behavior determination process.

On the other hand, social agent architectures have been
devised for describing group structures and behavior. In
many cases social agent architectures provide concepts
on an organizational level, which allow the description of
structures and behavior similar to how work is organized
within human organizations.

Figure 22.1 gives an overview of existing internal and
social agent architectures. Besides the architectures
themselves, it is also sketched what their origin is. In
general, most agent architectures build on agent theories,
which describe the basic building blocks of agents includ-
ing the behavior determination mechanism in a more
abstract way than architectures. In many cases, agent

SOAR
Architecture

Ferber‘s
AGR

Newell's
UTC

IRMA

Taskmodel

TheoriesArchitectures

PRS

Bratman‘s
BDI

3-APL

AOP
Shoham‘s

AOP

Subsumption
Architecture

Brook‘s
Subsumption

JACK
Simple Teams

STEAM

Cohen‘s
Joint Intentions

Joint
Responsibility

Grosz‘s
SharedPlans

Concreteness

Dörner‘s
PSI

MicroPSI

Hübner‘s
MOISE�

Dignum‘s
OperA

ACT-R

Icarus

Andreson‘s
ACT

Psychology

Philosophy

Organization
Theory/Sociology

Biology

Disciplines

Figure 22.1: Overview of Agent Architectures (from Braubach et al. 2008)

CH022.indd 362 11/21/09 2:00:13 AM

theories have been deeply inspired by existing research
of non–computer science-related disciplines such as
organization theory, biology, psychology, and philosophy.
Hence architectures can be seen as technical interpreta-
tions of theories, which concretize and operationalize the
underlying ideas and conceptual framework in a way that
makes them implementable in software.

Internal Agent Architectures
Due to the variety of different internal agent architectures
that have been developed, several classifi cation schemes
have been proposed (Braubach et al. 2008). Most infl u-
ential, the scheme of Wooldridge and Jennings (1994)
assumes a distinction between reactive, deliberative, and
hybrid agent architectures. A reactive agent architecture
underpins the importance of fast reactions to changes
within highly dynamic environments. In its purist form,
reactive agents do not possess a symbolic representa-
tion of the world, and they build their decisions on the
received percepts from the environment and other agents
only. This also means that an agent has no memory,
where it can save experiences from the past and thus
cannot learn from failures made earlier. Nonetheless,
in specifi c application domains fast reactions outweigh
correct behavior, which is generated too slowly and may
no longer be applicable in the current situation. The sub-
sumption architecture (Brooks 1989) is a typical example
of a reactive control mechanism, which has been utilized
very successfully in the robot domain.

In contrast to reactive agent architectures, deliberative
architectures take up a different position and emphasize a
symbol-based reasoning process, which requires an agent
to posses a local worldview. In line with the physical sym-
bol system hypothesis (Newell and Simon 1976) symbol
manipulation is necessary for producing general intelligent
action. In consequence, it is often assumed that delibera-
tive agents store their beliefs as logical formulae and have
some inference mechanism at their disposal, which implies
new knowledge and actions from the existing knowledge.
A well-known deliberative agent architecture is IRMA
(Intelligent Resource-bounded Machine Architecture)
(Bratman, Israel, and Pollack 1988), which exploits tra-
ditional planning techniques for goal achievement. IRMA
has been successfully used to explore agent reasoning in a
relatively simple artifi cial environment called tile world, in
which agents have to transport tiles to holes.

Because both architecture styles exhibit weaknesses
when implemented in their strict form, many hybrid
architectures try to unify aspects from both approaches
and therefore combine timely reactions with well-planned
behavior. Hybrid architectures have gained high attention
in practice, and nearly all internal architectures, which
are supported by agent frameworks, build on the bal-
anced reactive as well as deliberative actions. Due to the
high signifi cance of hybrid architectures, in the following
paragraphs two typical representatives are presented in
more detail.

Task model. The task model is an agent architec-
ture, which has been extracted and consolidated from
practical experiences building agent platforms (cf., e.g.,
JADE, ZEUS, LS/TS). It is based on the observation that

agent behavior should be hierarchically decomposable
into smaller pieces of work similar to different compo-
nents in object-oriented settings. Hence, an agent com-
prises an interpreter, which executes tasks that have been
specifi ed in task templates at design time. In general, the
architecture permits a complex task to be composed of
an arbitrary number of subtasks, which themselves can
be complex or simple. Concurrent agent behavior
can be established by using more than one active top-
level task at the same time. On the other hand, a sequen-
tial execution of behaviors can be achieved by scheduling
the following task at the end of the current behavior. If
coordination between different tasks is necessary, this is
normally done by using specifi c data stores, which can
be accessed from multiple tasks and can be employed for
exchanging processing results.

Procedural Reasoning System (PRS). The PRS
architecture is loosely based on the BDI (belief-desire-
intention) model, which has been proposed by Bratman
(1987) as a theory for explaining rational human behavior
using a framework of folk-psychological mentalistic notions
and their interplay. The model assumes that human prac-
tical reasoning is a two-staged process, which consists of a
goal deliberation and a means-end reasoning phase. While
the objective of goal deliberation is to fi nd a consistent
goal set without confl icting goals, means-end reasoning is
concerned with fulfi lling a concrete goal via plans, which
describe predefi ned procedural knowledge of an agent.
In PRS, an agent is therefore specifi ed using the mental-
istic concepts—beliefs, goal events, and plans—whereby
beliefs are used to store the agent’s knowledge about the
word, goal events indicate the currently active desires and
plans represent the procedural means for achieving goals.
The PRS agent interpreter operates on these notions and
realizes the means-end reasoning while assuming that
an agent only possesses consistent goal sets, that is, goal
deliberation is not considered at the architecture level.
The interpreter has a relatively simple deliberation cycle,
which works on an event queue. In this queue all events
that need to be processed, including incoming messages as
well as new goal events, are contained. In each deliberation
cycle, the agent interpreter selects the next event from the
queue and searches for plans that can handle the current
event. These plans are subsequently checked for their
applicability and one of the applicable plans is then selected
for execution. Given that a plan failure occurs, alternative
plans can be executed until either the underlying goal has
been achieved or no further plans are available.

Social Agent Architectures
In the context of social agent architectures, different
approaches have been proposed that either focus on the
structure or on the behavior dimension of organizations.
Structure-based approaches exploit organizational con-
cepts, which allow multiagent systems to be hierarchically
broken down in group-based units, which can themselves
be assembled by subgroups or individual agents. This
facilitates the construction of highly complex applica-
tions by using natural abstractions and applying the well-
known divide and conquer principle. On the other hand,
approaches, which emphasize the behavioral dimension

 ARCHITECTURES FOR INTELLIGENT AGENTS 363

CH022.indd 363 11/21/09 2:00:14 AM

364 INTELLIGENT AGENTS

primarily, aim at supporting teamwork in cooperative
scenarios. For to be able to support the teamwork of
agents the approaches have to provide solutions for dif-
ferent kinds of activities including at least team forma-
tion, operation, and termination. To be usable in practice,
team mechanisms should also consider the degradation
of a team (e.g., when a member leaves the group) and
provide adequate compensation strategies. In the follow-
ing, a structure-centered as well as a behavior-centered
approach will be presented.

Agent-Group-Role Model. An infl uential and simple
structuring mechanism for agent teams is the agent-
group-role (AGR) model, which relies on an organi-
zational viewpoint for multiagent systems (Ferber,
Gutknecht, and Michel 2003). This schema assumes
that an agent is an active, communicating entity play-
ing roles within certain groups. In this respect, a group
is seen as a set of agents sharing some common prop-
erty, and groups are used as basic structuring means for
an application. Groups are defi ned in terms of their
associated roles, which represent placeholders for the
different kinds of members forming a group. Therefore,
a role is an abstract representation of a functional posi-
tion or just an identifi cation of a member within a group.
At runtime an agent must play at least one role within
some group, but is allowed to play arbitrarily many roles
in possibly different groups. Groups can freely overlap,
which allows an agent to be part of different groups at
the same time.

Joint Intentions. A well-known cognitive framework
for describing the behavioral aspects of teamwork is the
joint intentions theory (Cohen and Levesque 1991). It
has been devised in order to set up the formal principles
for describing how agents can pursue a common goal.
Therefore, the joint intentions theory assumes a mental-
istic view of agents and extends the individual notions of
belief, goals, and intentions to their group-related coun-
terparts. The key concept of a joint intention is consid-
ered as a joint commitment of an agent team to perform
a collective action while being in a shared mental state.
This joint commitment is expressed with a joint persist-
ent goal held by every agent of the team. In contrast to
an individual goal, a joint persistent goal involves further
responsibilities for the involved agents. This basically
means that each agent not only pursues the goal individu-
ally, but also that it will inform the others about impor-
tant goal changes, that is, it will inform the others if it
believes the goal being achieved or unattainable. Based
on this general commitment the group can act in a coher-
ent manner and single teammates will not unilaterally
drop the joint intention.

DEVELOPMENT METHODOLOGIES
Developing an agent-based software requires, like
any other type of software, a systematic engineering
approach that supports and drives a development team
along all the phases of the software production process.
Previous years have shown a burgeoning of a number
of innovative agent-oriented (AO) methodologies. Many
of these methodologies use the metaphor of an human
organization (possibly divided into suborganizations) in

which agents play one or several roles and interact with
each other. Human organization models and structures
are employed for the design of MAS. Concepts like role,
social dependency, and organizational rules are used
not just to model the environment in which the system
will work, but the system itself. Given the organizational
nature of a MAS, one of the most important activities in
an AO methodology results in the defi nition of the inter-
action and cooperation models that capture the social
relationships and dependencies between agents and the
roles they play within the system. Interaction and coop-
eration models are generally very abstract, and they are
concretized implementing interaction protocols in later
phases of the design.

Overall Characterization
The range of AO methodologies is quite complex, and
it is therefore very diffi cult to give a complete charac-
terization of all their facets and dimensions. A tenta-
tive analysis proposed in Henderson-Sellers and Giogini
(2005) showed a genealogy where lineages and infl uences
among a number of methodologies have been character-
ized starting from their roots. Particularly, some of them
are clearly based on ideas from artifi cial intelligence (AI),
others as direct extensions of existing OO methodolo-
gies, while yet others try and merge the two approaches
by taking a more purist approach yet allowing OO ideas
when these seem to be suffi cient.

Several methodologies acknowledge a direct descent
from full OO methods. In particular, MaSE (or the more
recent O-MaSE) (Garcia-Ojeda et al. 2007) acknowledges
infl uences from (Kendall, Malkoun, and Jiang 1996) as well
as an inheritance from AAII (Kinny et al. 1996), which
in turn was strongly infl uenced by the OO methodology
of Rumbaugh and colleagues called OMT (Rumbaugh
et al. 1991). Similarly, the OO methodology of Fusion
(Coleman et al. 1994) was said to be highly infl uen-
tial in the design of Gaia (Zambonelli, Jennings, and
Wooldridge 2003). Two other OO approaches have also
been used as the basis for AO extensions. RUP (Kruchten
1999) has formed the basis for Adelfe (Bernon et al. 2002)
and also for MESSAGE (Caire et al. 2001), which, in turn,
is the basis for INGENIAS (Pavon, Gomez-Sanz, and
Fuentes 2005; Gómez-Sanz et al. 2008). More recently,
RUP has also been used as one of the inputs, together
with AOR (Wagner 2003), for RAP (Taveter and Wagner
2005). Second, the OPEN approach to OO software
development has been extended signifi cantly to support
agents, sometimes called Agent OPEN (Debenham and
Henderson-Sellers 2003). Finally, two other methodolo-
gies exhibit infl uences from object-oriented methodo-
logical approaches. Prometheus (Padgham and Winikoff
2004; Padgham, Thangarajah, and Winikoff 2008),
although not an OO descendant, does suggest using
OO diagrams and concepts whenever they exist and are
compatible with the agent-oriented paradigm. Similarly,
PASSI (Cossentino 2005) merges OO and MAS ideas,
using UML as its main notation. Somewhat different
is the MAS-CommonKADS methodology (Iglesias et al.
1998). This is a solidly AI-based methodology that claims
to have been strongly infl uenced by OO methodologies,

CH022.indd 364 11/21/09 2:00:15 AM

 DEVELOPMENT METHODOLOGIES 365

notably OMT. Then there are the methodologies that do
not acknowledge any direct genealogical link to other
approaches, OO or AO, such as Tropos (Bresciani et al.
2004), Nemo (Huget 2002), MASSIVE (Lind 1999), and
Cassiopeia (Collinot and Drogoul 1998).

Additional useful literature on agent-oriented soft-
ware and systems development is Bergenti, Gleizes,
and Zambonelli (2004), Henderson-Sellers and Giorgini
(2005), Luck, Ashri, and D’Inverno (2004), and Weiss
(2002).

Selected AO Methodologies
We will briefl y describe three of the most popular AO
methodologies: GAIA, Prometheus, and Tropos.

GAIA (Zambonelli et al. 2003) is one of the fi rst pro-
posed agent-oriented software engineering methodolo-
gies. In GAIA, it is assumed that for the development of
medium and large multiagent systems (MAS), possibly
situated in open and dynamic environments that have
to guarantee predictable and reliable behaviors, the
most appropriate metaphor is that of an organization.
Organizations are viewed in GAIA as collections of roles,
which are defi ned in terms of responsibilities, permis-
sions, activities, and protocols. Responsibilities defi ne
the functionality of the role, while permissions are the
rights that allow the role to perform its responsibilities.
Activities are computations that can be executed by the
role, and protocols defi ne the interaction between roles.
As soon as the complexity of systems increases, modular-
ity and encapsulation principles suggest dividing the sys-
tem into different suborganizations, with a subset of the
agents being possibly involved in multiple organizations.

In each organization, an agent can play one or more
roles, which defi ne what it is expected to do in the organi-
zation, both in concert with other agents and in respect
to the organization itself. The notion of a role in GAIA
gives an agent a well-defi ned position in the organiza-
tion, with an associated set of expected behaviors. To
accomplish their roles, agents typically need to interact
with each other to exchange knowledge and coordinate
their activities. These interactions occur according to
patterns and protocols dictated by the nature of the role
itself. In addition, an MAS is typically immersed in an
environment with which the agents may need to interact
in order to accomplish their roles. That portion of the
environment that agents can sense and effect is deter-
mined by the agent’s specifi c role, as well as by its cur-
rent status. Identifying and modeling the environment
involve determining all the entities and resources that the
MAS can exploit, control, or consume when it is working
towards the achievement of the organizational goal.

However, although role and interaction models can be
useful to fully describe an existing organization, they are
of limited value in building an organization. This moti-
vates the introduction of the notions of organizational
rules and organizational structures. Indeed, before being
able to fully characterize the organization, the analysis
of an MAS should identify the constraints that the actual
organization, once defi ned, will have to respect, that is
organizational rules. It is possible to distinguish between
safety and liveness organizational rules. The former refer

to the invariants that must be respected by the organiza-
tion for it to work coherently; the latter express the dynam-
ics of the organization. A role model implicitly defi nes
the topology of the interaction patterns and the control
regime of the organization’s activities. That is, it implicitly
defi nes the overall architecture of the MAS organization,
that is, its organizational structure. It is more natural for
the choice of the organizational structure to follow from
the identifi cation of the organizational rules.

The GAIA design process starts with the analysis phase,
whose aim is to collect and organize the specifi cation,
which is the basis for the design of the computational
organization. This means defi ning an environmental
model, preliminary roles and interaction models, and a
set of organizational rules. Then, the process continues
with the architectural phase, aimed at defi ning the sys-
tem’s organizational structure in terms of its topology and
control regime, which, in turn, helps to identify complete
roles and interaction models. During the detailed design
phase a detailed, but technology-neutral, specifi cation of
an MAS is produced.

Prometheus (Padgham and Winikoff 2004) is agent-
based software engineering methodology supposed
to cover the overall development process. Three main
phases are supported: (1) system specifi cation, where the
operating environment is identifi ed along all goals and
functionalities of the system; (2) architectural design,
where the overall structure of the system is given and
needed type of agents and their interactions are specifi ed;
(3) detailed design, which focuses on defi ning capabilities,
internal events, plans, and detailed data structures for
each agent.

Prometheus uses scenarios as variants of the scenarios
introduced by UML use cases, and interaction diagrams
are essentially UML sequence diagrams. Use cases sce-
narios are used in Prometheus to specify aspects of the
system and describe examples of the system in opera-
tion. In the architectural design phase, the interactions
between agents are defi ned using interaction diagrams
and interaction protocols. The notation for this is a sim-
plifi ed variant of UML sequence diagrams for interaction
diagrams, and AUML for the interaction protocol.

The overall structure of the system is specifi ed in a sin-
gle diagram type at different levels of detail: system, agent,
and capability. Further diagrams are used to show data
coupling and agent acquaintance relationships. Dynamic
behavior is described with UML and AUML diagrams. In
the system specifi cation phase, Prometheus gives a strong
emphasis to the determination of the system’s goals and
functionalities. The determination of goals results in an
iterative process: identifying and refi ning system goals,
grouping goals into functionalities, describing a func-
tionality descriptor, defi ning use case scenarios (useful to
identify missing goals), and checking whether all goals
are covered by scenarios. Given an initial set of goals elic-
ited from the initial requirements, the analyst refi nes and
elaborates them using a hierarchical structure answering
questions such as why goals are needed and how they can
be achieved.

During the system specifi cation phase, roles are defi ned
and mapped into the system’s functionalities. A role deals
with a single aspect or subgoal of the system, and it has to

CH022.indd 365 11/21/09 2:00:15 AM

366 INTELLIGENT AGENTS

be very specifi c to avoid thus having functionalities that
are too general, which can lead to potential misunder-
standing. The defi nition of functionality also provides the
specifi cation of the information needed and produced,
and it is linked to one or more system goals. Roles are
also used in the architectural design phase to build data
coupling diagrams that describe functionalities and iden-
tifi ed data. From data coupling diagrams, it is possible
to extract and elaborate constraints that can be used to
build actual agents.

From scenarios, analysts develop interaction diagrams
during the architectural design phase and then interac-
tion protocols. Information about agent interactions are
extracted from the functionality descriptors, and each
agent type is linked to other agent types it interacts with.
The specifi cation of agents’ interaction focuses mainly on
the dynamic behavior of the system. UML sequence dia-
grams are adapted to represent interaction diagrams and
are used as initial representations of agent interactions.
Interaction protocols are fi nal design artifacts.

Prometheus is tool-supported (Padgham, Thangarajah,
and Winikoff 2008) by the Prometheus Design Tool
(PDT) and the JACK Development Environment (JDE).
PDT allow users to create and elaborate Prometheus
design. In particular, PDT helps in avoiding the introduc-
tion of inconsistencies, and it provides cross-checking
that detects other forms of inconsistency. Differently, JDE
is used for the skeleton code generation from design dia-
grams. It guarantees also that changes made to the code
are refl ected in the design diagrams and vice versa.

Tropos (Bresciani et al. 2004) is requirement-driven
in the sense that it is based on concepts used during
early requirements analysis. Tropos adopts the concepts
offered by i* (Yu 1995), a modeling framework proposing
concepts such as actor (actors can be agents, positions,
or roles), as well as social dependencies among actors,
including goal, softgoal, task, and resource dependen-
cies. These concepts are used in all software development
phases of Tropos, from the early requirements analy-
sis down to the actual implementation. Tropos is a full
tool-supported methodology (Morandini et al. 2008) that
spans four phases that can be used either following the
waterfall or the spiral model respectively for sequential
and iterative development: (1) early requirements, (2) late
requirements, (3) architectural design, (4) detailed design.
Although, there are many proposals to integrate Tropos
with agent-oriented programming frameworks, originally
Tropos did not support the implementation phase.

Early requirements analysis focuses on the intentions
of stakeholders. Intentions are modeled as goals. Through
some form of goal-oriented analysis, these initial goals
eventually lead to the functional and nonfunctional
requirements of the system-to-be. In Tropos, stakehold-
ers are represented as (social) actors who depend on each
other for goals to be achieved, tasks to be performed,
and resources to be furnished. The Tropos framework
includes the strategic dependency model for describing
the network of relationships among actors, as well as the
strategic rationale model for describing and supporting
the reasoning that each actor goes through concerning
its relationships with other actors. A strategic depend-
ency model is a graph involving actors who have strategic

dependencies among each other. A dependency describes
an “agreement” (called dependum) between a depend-
ing actor (depender) and an actor who is depended upon
(dependee). The type of the dependency describes the
nature of the agreement. Goal dependencies are used
to represent delegation of responsibility for fulfi lling a
goal; softgoal dependencies are similar to goal depend-
encies, but their fulfi lment cannot be defi ned precisely
(for instance, the degree of fulfi lment is subjective); task
dependencies are used in situations where the dependee
is required to perform a given activity; and resource
dependencies require the dependee to provide a resource
to the depender.

Late requirements analysis results in a requirements
specifi cation that describes all functional and nonfunc-
tional requirements for the system-to-be. In Tropos, the
system is represented as one or more actors that partici-
pate in a strategic dependency model, along with other
actors from the system’s operational environment. In
other words, the system comes into the picture as one or
more actors who contribute to the fulfi llment of stake-
holder goals. As late requirements analysis proceeds, the
system is given additional responsibilities, and ends up as
the dependee of several dependencies. A strategic ration-
ale model determines through a means-ends analysis how
the system goals (including softgoals) that were identifi ed
during early requirements can actually be fulfi lled exploit-
ing the contributions of other actors. A strategic rationale
model is a graph with four types of nodes—goal, task,
resource, and softgoal—and two types of links—means-
ends links and decomposition links. A strategic ration-
ale graph captures the relationship between the goals of
each actor and the dependencies through which the actor
expects these dependencies to be fulfi lled.

A Tropos system architecture constitutes a relatively
small, intellectually manageable model of system struc-
ture, which describes how system components work
together. Tropos offers a catalogue of organizational
architectural styles for cooperative, dynamic, and dis-
tributed applications—such as multiagent systems—to
guide the design of the system architecture. These organi-
zational architectural styles are based on concepts and
design alternatives coming from research in organiza-
tion management. As such, they help match a multiagent
system architecture to the organizational context within
which the system will operate.

TOOLS, PLATFORMS,
AND PROGRAMMING LANGUAGES
(FRAMEWORKS)
For the development of multiagent systems it is neces-
sary to cast the agent concepts and architectures to
concrete implementation means. In order to avoid the
burden of constructing agent systems from scratch for
each new application, several kinds of ancillary tools can
be employed. In general, the tools can be categorized
into development tools needed for building an application
and the runtime infrastructure (called agent platform)
needed to execute agent applications. An agent platform
offers the basic management services for hosting agents

CH022.indd 366 11/21/09 2:00:16 AM

 TOOLS, PLATFORMS, AND PROGRAMMING LANGUAGES (FRAMEWORKS) 367

on a uniform infrastructure and additionally exposes
ready-to-use communication mechanisms for the agents.
Conceptually, a blueprint for agent platforms has been
proposed in the FIPA abstract architecture (cf. the sec-
tion on Tools, Platforms, and Programming Languages
(Frameworks)). Besides management functionalities, an
agent platform is characterized by the kind of agents that
can be executed. Therefore, the development of appli-
cations using an agent platform heavily depends on the
supported internal and social agent architectures. In this
respect, the internal architecture determines the concepts
and mechanisms that can be used for agent behavior
programming, whereas the social architecture specifi es
which notions can be used for realizing coordination
between agents and team management. Technically, a
platform is characterized by the programming language
it provides for realizing agents and the available tools for
development, administration, and debugging.

Today, there is a multitude of commercial and open-
source agent platforms available in the market. Hence, in
the following, only a broad overview can be given and a
small cutout of these presented in more detail. In order
to present a meaningful selection of platforms, agent plat-
forms are categorized based on a coarse classifi cation,
and one typical representative of each primary category is
exemplifi ed. This classifi cation scheme, which was initially
proposed by Braubach and colleagues (2006), is depicted
in Figure 22.2. It distinguishes platforms by means of
their primary focus and proposes three main categories:
middleware, reasoning, and social-oriented platforms.

Middleware Platforms
In the context of distributed systems middleware is seen as
a software layer between an application and the operating

system providing generic services that are beyond the func-
tionalities of the operating system and can be reused within
different kinds of applications (Coulouris, Dollimore, and
Kindberg 2005). Examples of such functionalities include
directory services and message passing mechanisms.

In the fi eld of multiagent systems middleware plat-
forms play a similar role and have in common that they
focus on a sound technological base for the execution of
agents. Therefore they emphasize aspects such as interop-
erability, robustness, scalability, and mobility. Under this
point of view, mobile agent toolkits such as Grasshopper
(Bäumer et al. 1999), which allow agents to migrate
between different hosts, can also be seen as part of the
middleware category. The most important characteristic
supported by nearly all middleware platforms is inter-
operability, which has been realized by the adherence
to the FIPA standards. In many cases, representatives of
this category do not use sophisticated agent architectures
but rather rely on the task model, which assembles the
overall behavior from simpler behavior modules. For this
reason, most middleware platforms do not need specifi c
agent programming languages, and typical mainstream
object-oriented languages such as Java can be used. In
the following the JADE platform will be presented as a
typical representative of the agent middleware category.

JADE overview. The JADE platform (Java Agent
Development Environment) is developed as open-source
software by the Telecom Italia Lab (TILAB) since 1998
(Bellifemine et al. 2005). JADE has a big user community
and has been adopted for applications from many dif-
ferent areas. As one example Whitestein has used JADE
to construct an agent-based system for decision-making
support in organ transplant centers (Calisti et al. 2004).

JADE agent architecture. In JADE, agents are speci-
fi ed in terms of a behavior-based architecture. A behavior

Middleware Social

Reasoning

JADE
COUGAAR
OpenCybele
A-Globe
MULAN
LS/TS MDAL
(ADK)
(SAGE)
(DIET)
(SeMoA)
(Zeus)
(Grasshopper)

Jadex
JACK
LS/TS MARGE
Agentis
Oslo

Soar
AgentFactory
Jason
Open-PRS
Practionist
2-APL
SPARK
(Nuin)
(AgentBuilder)
(3-APL)

Soar STEAM
Jason MOISE+
Gorite
JACK SimpleTeams

MadKit
SACI-MOISE+

Legend:
(...): development discontinued
bold: open-source license

Figure 22.2: Classifi cation and Overview of Commercial and Open-Source Agent Platforms

CH022.indd 367 11/21/09 2:00:17 AM

368 INTELLIGENT AGENTS

corresponds to a task and serves for the encapsulation
of a specifi c functionality. An agent can be supplied with
arbitrarily with many behaviors in order to work on dif-
ferent tasks concurrently. The communication among
behaviors is realized by shared data stores, which can be
used to make visible processing results for one another.
For managing complexity, behaviors can be hierarchically
assembled. The execution of subbehaviors is determined
by the containing behavior and can be sequential, paral-
lel or based on a fi nite state machine. Each JADE agent is
executed in a separate thread, which performs a coopera-
tive nonpreemptive scheduling, that is, the agent main-
tains a list of all active top-level behaviors and executes
one step of each behavior in a round-robin fashion.

JADE language. JADE does not utilize an agent-ori-
ented programming language but instead employs Java
and offers agent-based functionalities such as message
sending through an application programming interface
(API). For a communication language the standardized
FIPA-ACL (Agent Communication Language) is used,
which ensures that JADE agents can communicate with
agents living on other FIPA-compliant agent platforms.
In addition, JADE supports most of the FIPA content
languages such as SL (Semantic Language) and RDF
(Resource Description Framework) for describing the
message content separately from the rest of the message.
To facilitate the communication in open systems JADE
also allows using ontologies for a shared understanding of
the used domain concepts. If such ontology objects need
to be transmitted between agents specifi c content encod-
ers and decoders are provided that are able to transform
the content to a specifi ed content language.

JADE tools. There is a broad range of tools available
for developing agent applications with JADE. Nonetheless,
most tools target the administration and debugging of
multiagent systems, whereas earlier development phases
are barely supported. As Java is employed for program-
ming agents, common object-oriented integrated devel-
opment platforms (IDEs) such as Eclipse can be used
without restrictions. The central access point for the stand-
ard runtime tool suite of JADE is the remote monitoring
agent (RMA), which offers a graphical user interface and
can be used for starting the other tools. The RMA mainly
exposes basic management functionalities for starting
and killing agents. Other runtime tools allow the sending
of messages to agents (dummy agent) and the stepwise
execution and monitoring of agent behavior (introspector
agent). For the debugging of multiagent systems the sniffer
tool is quite helpful, as it visualizes the messages between
agents in a style similar to UML sequence diagrams.

Reasoning Platforms
These kinds of platforms center on the internal reason-
ing processes of agents and aim at providing possibilities
for the effi cient specifi cation and execution of intelligent
agent behavior. The common characteristic of reasoning
platforms is that they rely on psychological or philosophi-
cal theories for explaining rational human behavior. Thus,
the primary aim of platforms from this category consists of
making those rather abstract theories usable for the con-
crete task of application development. For this purpose

agent architectures and agent programming languages
have been conceived which refi ne, extend, and interpret
the basic theories. In many cases these theories adopt the
intentional stance (Dennett 1971), which uses human-
centered mentalistic notions such as beliefs and goals for
behavior explanations. It has been argued that it is useful
to preserve the intentional stance also for the implemen-
tation of agents, because the notions can be used for such
matters as simplifying debugging of complex systems
(McCarthy 1979). Thus, in many cases reasoning plat-
forms encompass newly conceived agent programming
languages including mentalistic notions. As an example
reasoning platform Jadex will be further illustrated.

Jadex overview. The Jadex framework has been devel-
oped as an open-source project at the University of Hamburg
since 2003 (Pokahr, Braubach, and Lamersdorf 2005). It
follows the BDI model (Bratman 1987) and allows goal-
oriented agents to be built with standard software-
engineering technologies such as Java and XML. Jadex sep-
arates the reasoning engine for managing agent behavior
from the underlying agent execution infrastructure. Given
this separation, Jadex can be used in conjunction with dif-
ferent kinds of middleware such as other agent platforms
(like JADE) or component-based approaches (like J2EE
application servers). Jadex has been used to realize appli-
cations in different domains such as simulation, schedul-
ing, and business process management. For example, Jadex
was used to realize a multiagent application for negotiation
of treatment schedules in hospitals (Paulussen et al. 2006).

Jadex agent architecture. The behavior of an agent is
defi ned in terms of beliefs, goals, and plans in Jadex. Goals
represent the motivations of an agent and fi nally determine
the procedural behavior pursued that is encoded within
plans. Beliefs represent the knowledge of an agent and
typically refl ect its perception of the environment, itself,
and other agents. In Jadex, goals are decoupled from any
concrete behavior specifi cation and just express what an
agent wants to achieve, avoid, or maintain from a high-
level perspective. The notion of goals is very similar to its
general usage and supports many important characteris-
tics such as the possibility for handling strategic long-lived
as well as more tactical short-term goals. Given that an
agent can posses an arbitrary number of goals, it is of vital
importance to decide which of its goals may confl ict and
what to do if such situations arise. For this purpose Jadex
offers a generic goal deliberation strategy, which enables
an agent to reason about its current goals and is driven
by the overall objective of pursuing only confl ict-free goal
sets at any point in time. The relationships among goals
are specifi ed by the agent developer at design time and
will be enforced by the reasoning engine at runtime. A fur-
ther important step is that an agent has to determine how
it can achieve these goals. For this purpose PRS means-
end reasoning is used, meaning that appropriate plans are
dynamically selected and executed for a goal until the goal
has been achieved or no more plans are available.

Jadex language. Even though Jadex allows for pro-
gramming with mentalistic notions, it does not intro-
duce a new agent programming language but relies on
the standard languages XML and Java. XML is used for
the specifi cation of the agent structure according to a
BDI metamodel, which defi nes the permissive tags and

CH022.indd 368 11/21/09 2:00:17 AM

 APPLICATION AREAS 369

attributes of an agent. In addition, the procedural knowl-
edge of an agent, that is, its plan bodies, can be directly
programmed in plain Java. Agent-related behavior is
made accessible through a framework API, which per-
mits, for example, the dispatching of subgoals and the
reading and writing of belief values. The communication
language of Jadex depends on the middleware it is used
with and can, for instance, be made FIPA-compatible by
using JADE as infrastructure layer.

Jadex tools. Jadex offers various tools for developing
agent systems and focuses on activities for administra-
tion and debugging. The implementation of agents can
be done using standard object-oriented IDEs that already
offer sophisticated programming support for Java as well
as schema-based XML documents. The tool suite mainly
consists of the Jadex Control Center, which represents the
plugin-based entry point for tool components. Besides
administration tools for starting and stopping agents and
monitoring the state of directory services debugging tools
also allow the inspection of an agent’s state as well as its
stepwise execution. Using the simulation tool it is possible
to control the advancement of time within an execution

Social Platforms
Social agent platforms underline the importance of coordi-
nation and cooperation aspects within multiagent systems.
Thus, the focus of social platforms is not so much concerned
with providing concepts for specifying individual behavior.
Instead, concepts and mechanisms are targeted that allow
for setting-up group behavior of teams of agents. These
systems build upon the already discussed group behavior
theories and architectures. Due to the lack of integrated
approaches, the support of agent platforms for the organi-
zational metaphor is rather limited and restricted to either
the structure or behavior dimension. In the following, the
MadKit framework will be presented as an example for a
platform using structural behavior concepts.

MadKit overview. The MadKit (Multi-Agent Develo-
pment kit) platform was developed as open-source by Fer-
ber and colleagues (Gutknecht, Ferber, and Michel 2001). It
represents an agent framework adhering to the AGR model
and therefore takes a structural perspective on organiza-
tion modeling. The platform is based on a microkernel,
which only includes indispensable services for agent life-
cycle management, group management, and local message
transport. All further services have been agentifi ed and
can be added to the kernel on demand. The framework
has already been used for the realization of applications
covering a wide range of domains including simulations of
submarine robots and production line logistics.

MadKit agent architecture. MadKit focuses strongly
on the organizational view of multiagent systems and
hence does not implement a specifi c agent architecture to
be used by an agent programmer. On the one hand, this
gives agent developers complete freedom about how to
build their agents manually without further support from
the framework, but on the other hand this also requires
him to do so. An agent in MadKit is regarded as an autono-
mous object that can communicate via messages and play
roles in groups. The framework specifi es from an outside
view how an agent can be executed, and the adherence to

this interface is the only restriction MadKit agents need
to follow. Basically, the platform expects an agent to have
methods for the initialization, execution, and shutdown
that will automatically be called by the platform when an
agent will be executed. MadKit exploits this freedom by
already providing different simple agent types that can,
for instance, be rule-based or state-oriented.

MadKit language. In addition to the agent architec-
ture independence of MadKit, the platform also supports
different (standard) languages for programming agents.
Besides Java, which is the main language, the platform
also has built-in support for Scheme, Python, and Jess.
This allows developers to implement agents with a pro-
gramming language of their choice. The communication
language of MadKit is also confi gurable. In its basic form,
agents communicate via simple message objects that can
contain arbitrary content objects. Using specialized mes-
sage objects it is also possible to transmit FIPA-ACL
messages. Interestingly, the communication in MadKit is
also connected to the underlying AGR concepts. Hence, it
is possible to send or broadcast messages to specifi c roles
or groups instead of concrete agents.

MadKit tools. The Madkit distribution contains, besides
the platform, various development and runtime tools. The
platform offers a MadKit desktop, which contains short-
cuts to the available tools as well as many example appli-
cations. For the implementation of agents a developer can
make use of source code editors that support the different
built-in programming languages. In addition, a designer
tool can be used to set up MadKit projects and associate
agents and other resources to a project context. At runtime,
MadKit provides the group observer tool, which makes the
organizational structures visible and shows which groups
and agents exist. In addition, the tool allows conversations
to be visualized as UML sequence diagrams.

APPLICATION AREAS
Scope of Application
Intelligent agents have proven particularly suitable for
the implementation of applications with the following
characteristics:

Distribution: Data, information, and knowledge are
geographically and/or logically distributed and are
processed as such.

Parallelism/concurrency: The data are processed in
parallel/concurrently.

Openness: The number and the type of hardware and
software components involved in the application are
variable and possibly not precisely known a priori (on
design).

Embedded in complex (dynamic, unpredictable, lim-
ited transparency, heterogeneous, etc.) socio-technical
environments (situated applications).

With advancing technological progress, such as computer
networking and platform interoperability, such applications
are gaining importance in a broad range of commercial,
industrial, and scientifi c domains. In general, these three
characteristics represent a multitude of applications that

•

•

•

•

CH022.indd 369 11/21/09 2:00:18 AM

370 INTELLIGENT AGENTS

are based on new models of and approaches to computer-
supported information processing, such as grid comput-
ing, peer-to-peer computing, Web computing, pervasive
and ubiquitous computing, autonomic computing, and
mobile computing. Their suitability for such applica-
tions ensues from their attributes corresponding with the
three key attributes of an agent—fl exibility, interactivity,
and autonomy. First, the characteristics distribution and
openness imply a distributed and open control structure
(which enables parallel and concurrent processing) and
thus the necessity to use software units for the imple-
mentation that can act autonomously (without central
control). Second, the characteristics openness and embed-
dedness imply the necessity to employ software units that
are as fl exible as possible, such as software units that are
capable of acting suitably despite unexpected changes in
the technological infrastructure or in the user require-
ments. Third, the characteristics distribution, openness,
and embeddedness imply the necessity to employ soft-
ware units that are capable of interacting as fl exibly and
autonomously as possible.

Application Domains
The application areas for multiagent systems can be cat-
egorized and described according to different criteria. In
the literature two rather orthogonal ways of categoriza-
tions can be found: using application sectors and appli-
cation classes. Sectors here refer to the type of business
such as industry or health care, whereas classes focus
on the underlying type of solution such as simulation or
robot control.

Figure 22.3 presents a matrix according to the two
categorization dimensions sketched before. The choice
of application sectors used here follows the proposal
of Jennings and Wooldridge (1998) and adds the mili-
tary domain. A more fi ne-grained breakdown of sectors
can be found in Luck and colleagues (2005). The selec-
tion of application classes is loosely based on Ferber
(1999), but also incorporates the proposal of Wooldridge
(2002). The categorizations of sectors as well as of

classes should not be considered as complete, but are
open for further refi nements and extensions. Despite
this issue, the spanned matrix already allows giving
an impression of the possibilities of multiagent sys-
tems and an overview of the areas in which they have
shown to be able to contribute to novel innovative solu-
tions. In the following each of the application sectors
will be explained in more detail. For further detailed
overviews of agent applications, see, for instance, Klügel
(2004) and Parunak (2000).

CONCLUSION
Over the past decade considerable progress has been
achieved in the fi eld of agent and multiagent technology,
and, as a result, today intelligent agents and agent-ori-
ented systems are gaining increasing attention in indus-
trial contexts. This attention mainly rests on the insight
that these systems have a signifi cant application potential
in a variety of complex domains, and much of the current
worldwide research on intelligent agents aims at putting
this potential into practice.

This chapter concentrated on several aspects of intel-
ligent agents that are of particular and direct relevance
to broad industrial acceptance and dissemination. Other
facets that are also essential to computational agency but
are not covered in this chapter due to limited space are,
for instance, automated negotiation, cooperative plan-
ning, and joint learning; the reader interested in a broader
depiction of intelligent agents is referred to Weiss (1999)
and Wooldridge (2002).

GLOSSARY
Agent: A self-contained computational (hard/software)

entity that handles its tasks in a knowledge-based, fl ex-
ible, interactive, and autonomous way

Agent architecture: Information and control fl ow
within an agent; more specifi cally, the arrangement of
data, algorithms, and control structures that an agent
uses in order to decide on his actions.

Industrial
Applications

Commercial
Applications

Entertainment
Applications

Medical
Applications

Military
Applications

Multi-Agent
Simulation

Human Computer
Interface Mgmnt.

Robot
Control

Information
Management

Problem
Solving

Sector

Class

Factory simulations
Market/trading

simulations

Movie scene
Productions/

Games

Goods transport

Production robots

Tracking and
Tracing

Augmented
reality tools

E-Business

Household
robots

Web search
Email filtering

Shop bots/
Help assistants

Strategy games

“Intelligent” toys

Artificial
game reporters

Avatars in games

Hospital
simulations

Hospital logistics

Medical device
control

Disaster management/
Medical information

management
Telemedicine/
Home care
management

Battlefield
Simulations/
Pilot training

War logistics

Unmanned
aerial vehicles

Decision support/
Smart dust

Augmented reality
tools for soldiers

… … … … … …

…

…

…

…

…

…

…

Figure 22.3: Overview of Multiagent Application Areas

CH022.indd 370 11/21/09 2:00:18 AM

 REFERENCES AND SUGGESTED READINGS 371

Agent communication language: A formal language
that allows agents to exchange knowledge and to inter-
act in a sophisticated manner at the knowledge level.

Agent-oriented programming: The programming of
software in terms of agent-specifi c mentalistic notions
(e.g., belief and desire) as well as agent-specifi c organi-
zational notions (e.g., group and coalition).

Computational autonomy: The ability of a computational
entity to act under self-control and to make decisions
even in complex and perhaps unforeseen situations.

Multiagent system: A system composed of at least two
agents; often used synonymously to agent system intel-
ligent agent, computational agent, autonomous agent
software agent → agent.

CROSS REFERENCES
Distributed Intelligent Networks; Expert Systems; Intelligent
Manufacturing Systems; Web Intelligence.

REFERENCES AND SUGGESTED
READINGS
Bäumer, C., M. Breugst, S. Choy, and T. Magedanz. 1999.

Grasshopper—A universal agent platform based
on OMG MASIF and FIPA standards. Proceedings
of First International Workshop on Mobile Agent for
Telecommunication Applications (MATA’99):1–18.

Bergenti, F., M.-P. Gleizes, and F. Zambonelli (Eds.). 2004.
Methodologies and software engineering for agent systems:
The agent-oriented software engineering handbook. Boston,
Dordrecht, London: Kluwer Academic Publishers.

Bernon, C., M.-P. Gleizes, G. Picard, and P. Glize. 2002. The
ADELFE methodology for an intranet system design.
Online-Proceedings of the AOIS Workshop 2002.
http://ftp.informatik.rwth-aachen.de/Publications/
CEUR-WS/Vol-57.

Bratman, M. 1987. Intention, plans, and practical reason.
Cambridge: Harvard University Press.

Bratman, M., Israel, D., and Pollack, M. 1988. Plans and
resource-bounded practical reasoning. Computational
Intelligence 4 (4):349–355.

Braubach, L., A. Pokahr, and W. Lamersdorf, (2008).
A Universal Criteria Catalog for Evaluation of
Heterogeneous Agent Development Artifacts. In Jung,
B. F., Michel, A., Ricci, and P. Petta, (Eds.), From Agent
Theory to Agent Implementation (AT2AI-6), OFAI
Technical Report No. 2008-01, Austrian Research
Institute for Artifi cial Intelligence (OFAI), pp. 19–28.

Braubach, L., Pokahr, A., and Lamersdorf, W. (2006). Tools
and Standards. In Kirn, S., Herzog, O., Lockemann,
P., and Spaniol, O. (Eds.), Multiagent Engineering—
Theory and Applications in Enterprises. Springer-
Verlag, pp. 503–530.

Bresciani, P., P. Giorgini, F. Giunchiglia, J. Mylopoulos,
and A. Perini. 2004. Tropos: An agent-oriented soft-
ware development methodology. Autonomous Agents
and Multi-Agent Systems (18):203–236.

Brooks, B. 1989. How to build complete creatures rather
than isolated cognitive simulators. In K. VanLehn,
(Ed.), Architectures for Intelligence. Erlbaum, Hillsdale,
NJ, pp. 225–239.

Caire, G., W. Coulier, F. Garijo, J. Gomez, J. Pavon, F. Leal,
P. Chainho, P. Kearney, J. Stark, R. Evans, and P. Massonet.
2001. Agent oriented analysis using MESSAGE/UML. In
M., Wooldridge, G., Weiß, and P. Ciancarini, (Eds.). Agent-
oriented software engineering II, LNCS 2222. Berlin,
New York, Heidelberg, Springer-Verlag, pp. 119–135.

Calisti, M., P. Funk, S. Biellman, and T. Bugnon. 2004. A
multi-agent system for organ transplant management.
Applications of Software Agent Technology in the Health
Care Domain Heidelberg: Springer-Verlag.

Cohen, P.R., and H.J. Levesque. 1991. Teamwork. Menlo
Park, CA., SRI International. Research Report.

Coleman, D., P. Arnold, S. Bodoff, C. Dollin, and H.
Gilchrist. 1994. Object-oriented development. The
fusion method. New Jersey: Prentice Hall.

Collinot, A., and A. Drogoul. 1998. Using the Cassiopeia
method to design a soccer robot team AAI Journal 12
(2–3):127–147.

Cossentino, M. 2005. From requirements to code with the
PASSI Methodology. In Agent-Oriented Methodologies,
ed. B. Henderson-Sellers and P. Giorgini. Hershey, PA:
Idea Group Inc., pp. 79–106.

Coulouris, G.F., J. Dollimore, and T. Kindberg, 2005.
Distributed systems. New Jersey: Addison-Wesley.

Debenham, J., and B. Henderson-Sellers. 2003. Designing
agent-based process systems—extending the OPEN
Process Framework. In V. Plekhanova, (Ed.), Intelligent
Agent Software Engineering, PA: Idea Group Publishing,
pp. 160–190.

Dennett, D. 1971. Intentional systems. Journal of
Philosophy 68:87–106.

Ferber, J. 1999. Multi-agents systems—An introduc-
tion to distributed artifi cial intelligence. New Jersey:
Addison-Wesley.

Ferber, J., O. Gutknecht, and F. Michel. 2003. From agents
to organizations: An organizational view of multi-
agent systems. In Proceedings of the 4th International
Workshop on Agent-Oriented Software Engineering IV.
Springer, pp. 214–230.

Garcia-Ojeda, J.C., S.A. DeLoach, W. Oyenan, and J.
Valenzuela. 2007. O-MaSE: A customizable approach
to developing multiagent development processes. In
M. Luck, and L. Padgham, (Eds.), Proceedings of the
8th International Workshop on Agent Oriented Software
Engineering. LNCS 4951. Heidelberg, Springer-Verlag,
Berlin, New York, pp. 1-15.

Gómez-Sanz J.J R., J. Fuentes-Fernández Pavón, I. García-
Magariño. 2008. INGENIAS development kit: A visual
multi-agent system development environment. The
Seventh International Conference on Autonomous
Agents and Multiagent Systems:1675–1676.

Gutknecht, O., J. Ferber, and F. Michel. 2001. Integrating
tools and infrastructures for generic multi-agent sys-
tems. Proceedings of the Fifth International Conference
on Autonomous Agents:441–448.

Henderson-Sellers, B., and P. Giorgini (Eds.). 2005. Agent-
oriented methodologies. PA:Idea Group Publishing.

Huget, M.-Ph. 2002. Nemo: An agent-oriented software
engineering methodology, Proc. AOSE Workshop
Sydney.

Iglesias, C.A.M., Garijo, J.C. Gonzalez, and J.R. Velasco.
1998. Analysis and design of multi-agent systems

CH022.indd 371 11/21/09 2:00:19 AM

372 INTELLIGENT AGENTS

using MAS-CommonKADS. Intelligent Agents IV: Agent
Theories, Architectures, and Languages, LNAI 1365,
Heidelberg, Berlin, New York: Springer-Verlag,

Jennings, N.R. 2000. On agent-based software engineer-
ing. Artifi cial Intelligence 117:277–296.

Kendall, E.A., M.T. Malkoun, and C. Jiang. 1996. A meth-
odology for developing agent based systems for enter-
prise integration. In P. Bernus, and L. Nemes, (Eds.).
Modelling and Methodologies for Enterprise Integration.
Heidelberg, Berlin, New York: Springer-Verlag.

Kinny, D., Georgeff, M., & Rao, A. (1996). A methodology
and modelling techniques for ystems of BDI agents.
Technical Note 58, Australian Artifi cial Intelligence
Institute, also published in Proceedings of Agents
Breaking Away, the 7th European Workshop on
Modelling Autonomous Agents in a Multi-Agent World
(MAAMAW’96) (pp. 56–71). Springer-Verlag.

Klügel, F. 2004. Applications of software agents. Künstliche
Intelligenz 2 (4):5–10.

Kruchten, P. 1999. The rational unifi ed process: An intro-
duction. Reading, MA: Addison-Wesley.

Lind, J. 1999. Iterative software engineering for multia-
gent systems. The MASSIVE Method, LNAI Vol. 1994.
Heidelberg, Berlin, New York: Springer-Verlag.

Luck, M., R. Ashri, and M. D’Inverno (Eds.). 2004. Agent-
based software development. Boston, London: Artech
House.

Luck, M., P. McBurney, O. Shehory, and S. Willmott. 2005.
Agent technology: Computing as interaction (A roadmap
for agent based computing). UK: AgentLink.

McCarthy, J. 1979. Ascribing mental qualities to machines.
In M. Ringle (Ed.). Philosophical Perspectives in
Artifi cial Intelligence. pp. 161–195. Humanities Press.

Morandini, M., D.C. Nguyen, A. Perini, and A. Susi. 2008.
Tool-supported development with Tropos: The confer-
ence management system case study. Proceedings of
8th International Workshop on AGENT ORIENTED
SOFTWARE ENGINEERING (AOSE 07). Revised
Selected Papers. LNCS 4951 Heidelberg, Berlin, New
York: Springer.

Newell, A., and H.A. Simon. 1976. Computer science
as empirical enquiry. Communications of the ACM
19:113–126.

Object Management Group (OMG): Mobile Agent Facility
Specifi cation. Available at: www.omg.org/cgi-bin/
doc?formal/2000-01-02, 2000.

Padgham, L., and M. Winikoff. 2004. Developing intel-
ligent agent systems: A practical guide. Hoboken, NJ:
John Wiley & Sons, Inc.

Padgham, L., J. Thangarajah, and M. Winikoff. 2008.
The Prometheus design tool—A conference manage-
ment system case study. In M. Luck, and L. Padgham,
(Eds.). Proceedings of 8th International Workshop
on Agent Oriented Software Engineering, LNCS Vol.
4951. Heidelberg, Berlin, New York: Springer-Verlag,
pp. 197–211.

Parunak, V. 2000. A practitioners’ review of industrial
agent applications. Autonomous Agents and Multi-
Agent Systems 3 (4):389–407.

Paulussen, T.O., A. Zöller, F. Rothlauf, A. Heinzl, L.
Braubach, A. Pokahr, and W. Lamersdorf. 2006. Agent-
based patient scheduling in hospitals. In Multiagent

engineering. theory and applications in enterprises, ed.
S. Kirn, O. Herzog, O., P. Lockemann, O. Spaniol:
255–275. Heidelberg, Berlin, New York: Springer-Verlag.

Pavón, J., J. Gomez-Sanz, and R. Fuentes. 2005. The
INGENIAS methodology and tools. In B. Henderson-
Sellers, and P. Giorgini (Eds.). Agent-Oriented
Methodologies (pp. 236–276). Hershey, PA: Idea Group.

Pokahr, A., L. Braubach, and W. Lamersdorf. 2005.
Jadex: A BDI reasoning engine. In R. Bordini,
M. Dastani, J. Dix, and A. El Fallah Seghrouchni,
(Eds.). Multi-Agent Programming: Languages, Platforms
and Applications. 149–174. Heidelberg, Berlin, New
York. Springer-Verlag.

Rumbaugh, J., M. Blaha, W. Premerlani, F.Eddy, and W.
Lorensen. 1991. Object-Oriented Modeling and Design.
New Jersey: Prentice-Hall.

Taveter, K., and G. Wagner. 2005. Towards radical agent-
oriented software engineering processes based on AOR
modeling. In B. Henderson-Sellers, and P. Giorgini
(Eds.). Agent-oriented methodologies. Hershey, PA: Idea
Group. (pp. 277–316).

Wagner, G. 2003. The agent-object relationship meta-
model: Towards a unifi ed view of state and behaviour.
Inf. Systems 28 (5): 475–504.

Willmott, S., M. Calisti, and E. Rollon. 2002. Challenges
in large-scale open agent mediated economies.
Proceedings of AAMAS ‘02: Revised Papers from the
Workshop on Agent Mediated Electronic Commerce
on Agent-Mediated Electronic Commerce IV, Designing
Mechanisms and Systems. Berlin Heidelberg New
York: Springer.

Weiss, G. 2002. Agent orientation in software engineer-
ing. Knowledge Engineering Review 16 (4):349–373.

Weiss, G. (Ed.). 1999. Multiagent Systems. Cambridge:
MIT Press.

Wooldridge,. M. 2002. Introduction to multiagent systems.
Hoboken, NJ: John Wiley & Sons, Inc.

Wooldridge, M., and N. Jennings, 1994. Agent theories,
architectures, and languages: A survey. Proceedings
of the International Workshop on Agent Theories,
Architectures & Languages (ECAI’94). Heidelberg,
Berlin, New York: Springer-Verlag.

Yu, E. 1995. Modelling strategic relationships for proc-
ess reengineering Ph.D. dissertation. University of
Toronto, Department of Computer Science.

Zambonelli, F., N. Jennings, and M. Wooldridge. 2003.
Developing multiagent systems: The Gaia methodol-
ogy. ACM Transactions on Software Engineering and
Methodology 12 (3): 317–370.

WEB POINTERS TO FURTHER
IMPORTANT RESOURCES
AAMAS conference series. www.aamas-conference.org.
IEEE FIPA standardization committee. www.fi pa.org/

about/fi pa_and_ieee.html.
International Journal of Agent-Oriented Software

Engineering. www.inderscience.com/browse/index.php?
journalID=174.

International Journal on Autonomous Agent and Multi-
Agent Systems (AAMAS). www.springer.com/computer/
artifi cial/journal/10458.

CH022.indd 372 11/21/09 2:00:20 AM

