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FOUNDATIONS OF INTELLIGENT 
AGENTS
The agent concept originated in artifi cial intelligence and 
especially in the fi eld of agent and multiagent technology 
(Weiss 1999; Wooldridge 2002). Thus the roots of the con-
cept extend back to the 1950s. In the past decade the agent 
concept has been successfully established in various fi elds 
of computer science, especially in the fi elds of software and 
software engineering. The term agent was long the subject 
of intensive discussion and efforts toward precise specifi ca-
tion, which continue to some extent today. Recent years have 
seen broad acceptance of the following notion of agency:

An intelligent agent is a self-contained software/hard-
ware unit that can handle its tasks in a knowledge-based, 
fl exible, interactive, and autonomous way.

The following ideas underlie these key attributes of an 
agent as formulated above:

Flexibility. An agent can act reactively as well as proac-
tively. Reactive means that the agent reacts in reason-
able time and in an appropriate way to changes in its 
environment and to changes in the requirements placed 
on it. Proactive means that the agent acts with predic-
tion, planning, and goal orientation. Flexibility, consist-
ing of reactivity and proactivity, is thus the capability to 
handle possibly unexpected events and simultaneously 
to act with planning and goal orientation.

Interactivity. An agent can interact with its environ-
ment—especially with human actors and with other 
agents. Such interactions can be on a very high level 
(i.e., they can be markedly communication- and knowl-
edge-intensive) and they serve the purpose of coordi-
nation with third parties, that is, the coordination of 
activities and the handling of mutual dependencies. 
Here we mean coordination in the sense of cooperation 
(joint pursuit of possibly shared plans and goals) as 

•

•

well as in the sense of competition (pursuit of partially 
or even wholly exclusive goals). Examples of forms 
of interaction that are considered typical of agents 
include negotiation and confl ict resolution in the realm 
of cooperative planning activities and competitive sales 
processes. Interactivity requires a precise interface that 
normally overshadows all the internals of the agent. 
Thus in general interactivity designates all the (higher) 
social—communicative, cooperative, and competitive— 
capabilities of an agent.

Autonomy. In the realm of its task processing, an agent 
can decide largely autonomously and without consulta-
tion or coordination with third parties (human users 
or other agents) which activities to execute. This fre-
quently requires or implicitly assumes that the deci-
sions to be made by the agents are nontrivial, that is, 
that they may require extensive knowledge processing 
or that the effects are signifi cant. An agent has a certain 
scope of decision-making authorization and freedom of 
action and so is subject to control by third parties only 
to a restricted degree.

Often the above notion of an agent is extended and 
concretized by associating further attributes with agents. 
The most prominent of these attributes include:

Situatedness/embeddedness. An agent is connected to 
its environment via close sensory and/or actuatory 
coupling.

Learning capability/adaptivity. An agent independently 
optimizes its functionality with respect to the tasks that 
are assigned to it, which may change over time.

Other attributes that the literature often designates 
as elementary for agents and that are noteworthy from a 
software engineering viewpoint include mobility, persist-
ency, rationality, and self-containment.

•

•

•
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The remainder of this chapter is structured as fol-
lows. The section on The Intelligent Agents Perspective 
on Engineering describes the agent-oriented perspec-
tive on software and systems engineering. The section 
on Architecture for Intelligent Agents describes avail-
able approaches to agent architectures. The section on 
Development Methodologies overviews the state of the art 
in systematically developing systems from the perspective 
of agent orientation. The section on Tools, Platforms, and 
Programming Languages (Frameworks) presents impor-
tant frameworks for building agent applications, includ-
ing tools, platforms, and programming languages. The 
section on Application Areas characterizes applications 
and application areas that are particularly suited for the 
agent-oriented approach.

THE INTELLIGENT AGENTS 
PERSPECTIVE ON ENGINEERING
One of the great steps forward in software and systems 
engineering was the evolution of fundamental system 
views—paradigms—that support successful, systematic, 
and effi cient development of software systems. Examples 
of such paradigms include structure orientation, object 
orientation, component orientation, aspect orientation, 
model orientation, architecture orientation, pattern ori-
entation, task orientation, and (usually in the context of 
business information systems) process orientation. Agent 
orientation, based on the notion of intelligent agents, is 
a new member of this list of paradigms (Jennings 2000). 
In the following, we describe fundamental qualitative 
attributes of agent orientation that confi rm a very high 
potential for utilization and acceptance in software and 
systems engineering.

System view and abstraction level. Agent orientation 
suggests the metaphor of a software system as a human 
organization and thereby opens an innovative, high-
quality, and at the same time intuitively comprehensible 
view of software. This paradigm is innovative and high-
quality because it enables viewing software design as 
organizational design; for a software developer, this opens 
a gold mine of organization theory concepts and tech-
niques that can be applied in software engineering. The 
paradigm is intuitively comprehensible because organiza-
tional terminology is part of our everyday life; therefore 
we have no problem in viewing a software system as an 
organization (or as a combination of multiple organiza-
tions) in which software units (agents) handle tasks under 
consideration of prescribed computation and behavioral 
guidelines (rules, standards, laws, etc.) and for this pur-
pose negotiate autonomously, resolve (resource) confl icts, 
dynamically form and dissolve superordinate organiza-
tional units (e.g., teams), play certain roles within these 
superordinate units (e.g., resource manager, service pro-
vider), and assume certain obligations with their roles.

Especially characteristic of the agent-oriented system 
paradigm is that it affords a new abstraction level that is 
distinct from other paradigms. The step to this abstrac-
tion level conforms to a development that is refl ected in 
higher programming languages and that is a necessary 

prerequisite for programming in the large: the rise in the 
degree of abstraction, away from the machine level and 
to the problem level.

Complexity management. Software is inherently 
complex and its complexity will continue to rise dramati-
cally as it has done in the past. A decisive criterion for the 
evaluation of a software development approach is thus 
its suitability for managing complexity. Four elementary 
techniques for managing complexity are very important 
in software engineering:

1. Decomposition. The reduction into smaller and thus 
comprehensible parts that can then be developed 
largely independently.

2. Abstraction. The creation of a model that encom-
passes signifi cant aspects while hiding unimportant 
aspects.

3. Structuring. The specifi cation of (ordered) relation-
ships and (desired) mutual effects among the compo-
nents of the overall system.

4. Reuse. The systematic use of past results (docu-
ments and processes) from software projects in future 
projects.

The intelligent agents perspective supports all four of 
these techniques in a very natural way.

Autonomy as a system attribute. From the software 
and systems engineering view, autonomy is the most strik-
ing and, in terms of effect, the most far-reaching attribute 
of intelligent agents. This attribute, even if it seems radical 
and revolutionary at fi rst glance, can be seen as the next 
natural step in the evolution of generic engineering prin-
ciples. This is best seen in the software fi eld. Elementary 
software units that have evolved up to now—monolithic 
programs, modules, procedures, objects, components, 
and services—demonstrate a rising degree of locality and 
increasing encapsulation of data and state control. All 
these software units have in common that their activation 
can be forced via external events (e.g., the start command 
by the user or the receipt of a message from another soft-
ware unit); the unit itself does not decide whether to acti-
vate upon such a message. Agent orientation overcomes 
this restriction by providing the autonomy attribute to 
additionally encapsulate the control over activation of 
a software unit (self-activation over outside activation, 
self-determination instead of foreign determination, and 
self-responsibility rather than foreign responsibility).

The step to software autonomy not only is histori-
cally motivated but also refl ects practical requirements. 
On the one hand, a number of applications indirectly 
imply the necessity to equip software with autonomy. On 
the other hand, autonomy is increasingly being required 
directly as a system attribute almost by defi nition. For 
example, it has become common to view a peer-to-peer 
system as a self-organizing system of equal autonomous 
units, and in the context of Web services, autonomy is 
usually seen as an important attribute (in addition to the 
attributes specifi ed in the W3C defi nition of Web services). 
Compatibility. A decisive factor for the potential of a 
new paradigm—or a view, a technique, a method, etc.—is 

CH022.indd   361 11/21/09   2:00:13 AM



362 INTELLIGENT AGENTS

its compatibility with existing and established approaches. 
Agent orientation is to a high degree compatible with other 
approaches. In particular, the agent-oriented view does not 
claim to displace or exclude other views.

The abstraction levels of agent-orientation and object-
orientation complement one another in a meaningful 
way.

Agents and components share the attribute of self-con-
tainment and their focus on their interfaces, and the 
agent concept can be seen as a specialization or gener-
alization (depending on viewpoint) of the component 
concept.

Due to its focus on organizational structures (at the 
level of individual agents), agent orientation has a close 
relationship to architecture orientation.

With its focus on interactivity and thus on consequences 
of coordinated actions, agent orientation has a funda-
mental commonality with process orientation.

Similar to task orientation, agent orientation empha-
sizes the importance of defi ning overall tasks (at 
the actor level instead of the object level) and their 
dependencies.

Thus agent orientation merges various core aspects 
of other paradigms and also can be used in combination 
with other approaches.

•

•

•

•

•

ARCHITECTURES FOR
INTELLIGENT AGENTS
In the context of multiagent systems two different kinds 
of architectures can be distinguished. Internal agent 
architectures determine the kinds of components an agent 
consists of and additionally defi ne how these components 
interact. An internal agent architecture therefore has the 
main purpose to implement a reasoning process that 
ultimately leads to agent actions. Many different agent 
architectures have been developed until today. Among 
them are simple architectures, such as those inspired by 
lower animals like ants as well as also very sophisticated 
architectures, which inter alia build on explanations of 
the human behavior determination process.

On the other hand, social agent architectures have been 
devised for describing group structures and behavior. In 
many cases social agent architectures provide concepts 
on an organizational level, which allow the description of 
structures and behavior similar to how work is organized 
within human  organizations.

Figure 22.1 gives an overview of existing internal and 
social agent architectures. Besides the architectures 
themselves, it is also sketched what their origin is. In 
general, most agent architectures build on agent theories, 
which describe the basic building blocks of agents includ-
ing the behavior determination mechanism in a more 
abstract way than architectures. In many cases, agent 
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theories have been deeply inspired by existing research 
of non–computer science-related disciplines such as 
organization theory, biology, psychology, and philosophy. 
Hence architectures can be seen as technical interpreta-
tions of theories, which concretize and operationalize the 
underlying ideas and conceptual framework in a way that 
makes them implementable in software.

Internal Agent Architectures
Due to the variety of different internal agent architectures 
that have been developed, several classifi cation schemes 
have been proposed (Braubach et al. 2008). Most infl u-
ential, the scheme of Wooldridge and Jennings (1994) 
assumes a distinction between reactive, deliberative, and 
hybrid agent architectures. A reactive agent architecture 
underpins the importance of fast reactions to changes 
within highly dynamic environments. In its purist form, 
reactive agents do not possess a symbolic representa-
tion of the world, and they build their decisions on the 
received percepts from the environment and other agents 
only. This also means that an agent has no memory, 
where it can save experiences from the past and thus 
cannot learn from failures made earlier. Nonetheless, 
in specifi c application domains fast reactions outweigh 
correct behavior, which is generated too slowly and may 
no longer be applicable in the current situation. The sub-
sumption architecture (Brooks 1989) is a typical example 
of a reactive control mechanism, which has been utilized 
very successfully in the robot domain.

In contrast to reactive agent architectures, deliberative 
architectures take up a different position and emphasize a 
symbol-based reasoning process, which requires an agent 
to posses a local worldview. In line with the physical sym-
bol system hypothesis (Newell and Simon 1976) symbol 
manipulation is necessary for producing general intelligent 
action. In consequence, it is often assumed that delibera-
tive agents store their beliefs as logical formulae and have 
some inference mechanism at their disposal, which implies 
new knowledge and actions from the existing knowledge. 
A well-known deliberative agent architecture is IRMA 
(Intelligent Resource-bounded Machine Architecture) 
(Bratman, Israel, and Pollack 1988), which exploits tra-
ditional planning techniques for goal achievement. IRMA 
has been successfully used to explore agent reasoning in a 
relatively simple artifi cial environment called tile world, in 
which agents have to transport tiles to holes.

Because both architecture styles exhibit weaknesses 
when implemented in their strict form, many hybrid 
architectures try to unify aspects from both approaches 
and therefore combine timely reactions with well-planned 
behavior. Hybrid architectures have gained high attention 
in practice, and nearly all internal architectures, which 
are supported by agent frameworks, build on the bal-
anced reactive as well as deliberative actions. Due to the 
high signifi cance of hybrid architectures, in the following 
paragraphs two typical representatives are presented in 
more detail.

Task model. The task model is an agent architec-
ture, which has been extracted and consolidated from 
practical experiences building agent platforms (cf., e.g., 
JADE, ZEUS, LS/TS). It is based on the observation that 

agent behavior should be hierarchically decomposable 
into smaller pieces of work similar to different compo-
nents in object-oriented settings. Hence, an agent com-
prises an interpreter, which executes tasks that have been 
specifi ed in task templates at design time. In general, the 
architecture permits a complex task to be composed of 
an arbitrary number of subtasks, which themselves can
be complex or simple. Concurrent agent behavior 
can be established by using more than one active top-
level task at the same time. On the other hand, a sequen-
tial execution of behaviors can be achieved by scheduling 
the following task at the end of the current behavior. If 
coordination between different tasks is necessary, this is 
normally done by using specifi c data stores, which can 
be accessed from multiple tasks and can be employed for 
exchanging processing results.

Procedural Reasoning System (PRS). The PRS 
architecture is loosely based on the BDI (belief-desire-
intention) model, which has been proposed by Bratman 
(1987) as a theory for explaining rational human behavior 
using a framework of folk-psychological mentalistic notions 
and their interplay. The model assumes that human prac-
tical reasoning is a two-staged process, which consists of a 
goal deliberation and a means-end reasoning phase. While 
the objective of goal deliberation is to fi nd a consistent 
goal set without confl icting goals, means-end reasoning is 
concerned with fulfi lling a concrete goal via plans, which 
describe predefi ned procedural knowledge of an agent. 
In PRS, an agent is therefore specifi ed using the mental-
istic concepts—beliefs, goal events, and plans—whereby 
beliefs are used to store the agent’s knowledge about the 
word, goal events indicate the currently active desires and 
plans represent the procedural means for achieving goals. 
The PRS agent interpreter operates on these notions and 
realizes the means-end reasoning while assuming that 
an agent only possesses consistent goal sets, that is, goal 
deliberation is not considered at the architecture level. 
The interpreter has a relatively simple deliberation cycle, 
which works on an event queue. In this queue all events 
that need to be processed, including incoming messages as 
well as new goal events, are contained. In each deliberation 
cycle, the agent interpreter selects the next event from the 
queue and searches for plans that can handle the current 
event. These plans are subsequently checked for their 
applicability and one of the applicable plans is then selected 
for execution. Given that a plan failure occurs, alternative 
plans can be executed until either the underlying goal has 
been achieved or no further plans are available.

Social Agent Architectures
In the context of social agent architectures, different 
approaches have been proposed that either focus on the 
structure or on the behavior dimension of organizations. 
Structure-based approaches exploit organizational con-
cepts, which allow multiagent systems to be hierarchically 
broken down in group-based units, which can themselves 
be assembled by subgroups or individual agents. This 
facilitates the construction of highly complex applica-
tions by using natural abstractions and applying the well-
known divide and conquer principle. On the other hand, 
approaches, which emphasize the behavioral dimension 
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primarily, aim at supporting teamwork in cooperative 
scenarios. For to be able to support the teamwork of 
agents the approaches have to provide solutions for dif-
ferent kinds of activities including at least team forma-
tion, operation, and termination. To be usable in practice, 
team mechanisms should also consider the degradation 
of a team (e.g., when a member leaves the group) and 
provide adequate compensation strategies. In the follow-
ing, a structure-centered as well as a behavior-centered 
approach will be presented.

Agent-Group-Role Model. An infl uential and simple 
structuring mechanism for agent teams is the agent-
group-role (AGR) model, which relies on an organi-
zational viewpoint for multiagent systems (Ferber, 
Gutknecht, and Michel 2003). This schema assumes 
that an agent is an active, communicating entity play-
ing roles within certain groups. In this respect, a group 
is seen as a set of agents sharing some common prop-
erty, and groups are used as basic structuring means for 
an application. Groups are defi ned in terms of their 
associated roles, which represent placeholders for the 
different kinds of members forming a group. Therefore, 
a role is an abstract representation of a functional posi-
tion or just an identifi cation of a member within a group. 
At runtime an agent must play at least one role within 
some group, but is allowed to play arbitrarily many roles 
in possibly different groups. Groups can freely overlap, 
which allows an agent to be part of different groups at 
the same time.

Joint Intentions. A well-known cognitive framework 
for describing the behavioral aspects of teamwork is the 
joint intentions theory (Cohen and Levesque 1991). It 
has been devised in order to set up the formal principles 
for describing how agents can pursue a common goal. 
Therefore, the joint intentions theory assumes a mental-
istic view of agents and extends the individual notions of 
belief, goals, and intentions to their group-related coun-
terparts. The key concept of a joint intention is consid-
ered as a joint commitment of an agent team to perform 
a collective action while being in a shared mental state. 
This joint commitment is expressed with a joint persist-
ent goal held by every agent of the team. In contrast to 
an individual goal, a joint persistent goal involves further 
responsibilities for the involved agents. This basically 
means that each agent not only pursues the goal individu-
ally, but also that it will inform the others about impor-
tant goal changes, that is, it will inform the others if it 
believes the goal being achieved or unattainable. Based 
on this general commitment the group can act in a coher-
ent manner and single teammates will not unilaterally 
drop the joint intention.

DEVELOPMENT METHODOLOGIES
Developing an agent-based software requires, like 
any other type of software, a systematic engineering 
approach that supports and drives a development team 
along all the phases of the software production process. 
Previous years have shown a burgeoning of a number 
of innovative agent-oriented (AO) methodologies. Many 
of these methodologies use the metaphor of an human 
organization (possibly divided into suborganizations) in 

which agents play one or several roles and interact with 
each other. Human organization models and structures 
are employed for the design of MAS. Concepts like role, 
social dependency, and organizational rules are used 
not just to model the environment in which the system 
will work, but the system itself. Given the organizational 
nature of a MAS, one of the most important activities in 
an AO methodology results in the defi nition of the inter-
action and cooperation models that capture the social 
relationships and dependencies between agents and the 
roles they play within the system. Interaction and coop-
eration models are generally very abstract, and they are 
concretized implementing interaction protocols in later 
phases of the design.

Overall Characterization
The range of AO methodologies is quite complex, and 
it is therefore very diffi cult to give a complete charac-
terization of all their facets and dimensions. A tenta-
tive analysis proposed in Henderson-Sellers and Giogini 
(2005) showed a genealogy where lineages and infl uences 
among a number of methodologies have been character-
ized starting from their roots. Particularly, some of them 
are clearly based on ideas from artifi cial intelligence (AI), 
others as direct extensions of existing OO methodolo-
gies, while yet others try and merge the two approaches 
by taking a more purist approach yet allowing OO ideas 
when these seem to be suffi cient.

Several methodologies acknowledge a direct descent 
from full OO methods. In particular, MaSE (or the more 
recent O-MaSE) (Garcia-Ojeda et al. 2007) acknowledges 
infl uences from (Kendall, Malkoun, and Jiang 1996) as well 
as an inheritance from AAII (Kinny et al. 1996), which 
in turn was strongly infl uenced by the OO methodology 
of Rumbaugh and colleagues called OMT (Rumbaugh 
et al. 1991). Similarly, the OO methodology of Fusion 
(Coleman et al. 1994) was said to be highly infl uen-
tial in the design of Gaia (Zambonelli, Jennings, and 
Wooldridge 2003). Two other OO approaches have also 
been used as the basis for AO extensions. RUP (Kruchten 
1999) has formed the basis for Adelfe (Bernon et al. 2002) 
and also for MESSAGE (Caire et al. 2001), which, in turn, 
is the basis for INGENIAS (Pavon, Gomez-Sanz, and 
Fuentes 2005; Gómez-Sanz et al. 2008). More recently, 
RUP has also been used as one of the inputs, together 
with AOR (Wagner 2003), for RAP (Taveter and Wagner 
2005). Second, the OPEN approach to OO software 
development has been extended signifi cantly to support 
agents, sometimes called Agent OPEN (Debenham and 
Henderson-Sellers 2003). Finally, two other methodolo-
gies exhibit infl uences from object-oriented methodo-
logical approaches. Prometheus (Padgham and Winikoff 
2004; Padgham, Thangarajah, and Winikoff 2008), 
although not an OO descendant, does suggest using 
OO diagrams and concepts whenever they exist and are 
compatible with the agent-oriented paradigm. Similarly, 
PASSI (Cossentino 2005) merges OO and MAS ideas, 
using UML as its main notation. Somewhat different 
is the MAS-CommonKADS methodology (Iglesias et al. 
1998). This is a solidly AI-based methodology that claims 
to have been strongly infl uenced by OO methodologies, 
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notably OMT. Then there are the methodologies that do 
not acknowledge any direct genealogical link to other 
approaches, OO or AO, such as Tropos (Bresciani et al. 
2004), Nemo (Huget 2002), MASSIVE (Lind 1999), and 
Cassiopeia (Collinot and Drogoul 1998).

Additional useful literature on agent-oriented soft-
ware and systems development is Bergenti, Gleizes, 
and Zambonelli (2004), Henderson-Sellers and Giorgini 
(2005), Luck, Ashri, and D’Inverno (2004), and Weiss 
(2002).

Selected AO Methodologies
We will briefl y describe three of the most popular AO 
methodologies: GAIA, Prometheus, and Tropos.

GAIA (Zambonelli et al. 2003) is one of the fi rst pro-
posed agent-oriented software engineering methodolo-
gies. In GAIA, it is assumed that for the development of 
medium and large multiagent systems (MAS), possibly 
situated in open and dynamic environments that have 
to guarantee predictable and reliable behaviors, the 
most appropriate metaphor is that of an organization. 
Organizations are viewed in GAIA as collections of roles, 
which are defi ned in terms of responsibilities, permis-
sions, activities, and protocols. Responsibilities defi ne 
the functionality of the role, while permissions are the 
rights that allow the role to perform its responsibilities. 
Activities are computations that can be executed by the 
role, and protocols defi ne the interaction between roles. 
As soon as the complexity of systems increases, modular-
ity and encapsulation principles suggest dividing the sys-
tem into different suborganizations, with a subset of the 
agents being possibly involved in multiple organizations.

In each organization, an agent can play one or more 
roles, which defi ne what it is expected to do in the organi-
zation, both in concert with other agents and in respect 
to the organization itself. The notion of a role in GAIA 
gives an agent a well-defi ned position in the organiza-
tion, with an associated set of expected behaviors. To 
accomplish their roles, agents typically need to interact 
with each other to exchange knowledge and coordinate 
their activities. These interactions occur according to 
patterns and protocols dictated by the nature of the role 
itself. In addition, an MAS is typically immersed in an 
environment with which the agents may need to interact 
in order to accomplish their roles. That portion of the 
environment that agents can sense and effect is deter-
mined by the agent’s specifi c role, as well as by its cur-
rent status. Identifying and modeling the environment 
involve determining all the entities and resources that the 
MAS can exploit, control, or consume when it is working 
towards the achievement of the organizational goal.

However, although role and interaction models can be 
useful to fully describe an existing organization, they are 
of limited value in building an organization. This moti-
vates the introduction of the notions of organizational 
rules and organizational structures. Indeed, before being 
able to fully characterize the organization, the analysis 
of an MAS should identify the constraints that the actual 
organization, once defi ned, will have to respect, that is 
organizational rules. It is possible to distinguish between 
safety and liveness organizational rules. The former refer 

to the invariants that must be respected by the organiza-
tion for it to work coherently; the latter express the dynam-
ics of the organization. A role model implicitly defi nes 
the topology of the interaction patterns and the control 
regime of the organization’s activities. That is, it implicitly 
defi nes the overall architecture of the MAS organization, 
that is, its organizational structure. It is more natural for 
the choice of the organizational structure to follow from 
the identifi cation of the organizational rules.

The GAIA design process starts with the analysis phase, 
whose aim is to collect and organize the specifi cation, 
which is the basis for the design of the computational 
organization. This means defi ning an environmental 
model, preliminary roles and interaction models, and a 
set of organizational rules. Then, the process continues 
with the architectural phase, aimed at defi ning the sys-
tem’s organizational structure in terms of its topology and 
control regime, which, in turn, helps to identify complete 
roles and interaction models. During the detailed design 
phase a detailed, but technology-neutral, specifi cation of 
an MAS is produced.

Prometheus (Padgham and Winikoff 2004) is agent-
based software engineering methodology supposed 
to cover the overall development process. Three main 
phases are supported: (1) system specifi cation, where the 
operating environment is identifi ed along all goals and 
functionalities of the system; (2) architectural design, 
where the overall structure of the system is given and 
needed type of agents and their interactions are specifi ed; 
(3) detailed design, which focuses on defi ning capabilities, 
internal events, plans, and detailed data structures for 
each agent.

Prometheus uses scenarios as variants of the scenarios 
introduced by UML use cases, and interaction diagrams 
are essentially UML sequence diagrams. Use cases sce-
narios are used in Prometheus to specify aspects of the 
system and describe examples of the system in opera-
tion. In the architectural design phase, the interactions 
between agents are defi ned using interaction diagrams 
and interaction protocols. The notation for this is a sim-
plifi ed variant of UML sequence diagrams for interaction 
diagrams, and AUML for the interaction protocol.

The overall structure of the system is specifi ed in a sin-
gle diagram type at different levels of detail: system, agent, 
and capability. Further diagrams are used to show data 
coupling and agent acquaintance relationships. Dynamic 
behavior is described with UML and AUML diagrams. In 
the system specifi cation phase, Prometheus gives a strong 
emphasis to the determination of the system’s goals and 
functionalities. The determination of goals results in an 
iterative process: identifying and refi ning system goals, 
grouping goals into functionalities, describing a func-
tionality descriptor, defi ning use case scenarios (useful to 
identify missing goals), and checking whether all goals 
are covered by scenarios. Given an initial set of goals elic-
ited from the initial requirements, the analyst refi nes and 
elaborates them using a hierarchical structure answering 
questions such as why goals are needed and how they can 
be achieved.

During the system specifi cation phase, roles are defi ned 
and mapped into the system’s functionalities. A role deals 
with a single aspect or subgoal of the system, and it has to 
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be very specifi c to avoid thus having functionalities that 
are too general, which can lead to potential misunder-
standing. The defi nition of functionality also provides the 
specifi cation of the information needed and produced, 
and it is linked to one or more system goals. Roles are 
also used in the architectural design phase to build data 
coupling diagrams that describe functionalities and iden-
tifi ed data. From data coupling diagrams, it is possible 
to extract and elaborate constraints that can be used to 
build actual agents.

From scenarios, analysts develop interaction diagrams 
during the architectural design phase and then interac-
tion protocols. Information about agent interactions are 
extracted from the functionality descriptors, and each 
agent type is linked to other agent types it interacts with. 
The specifi cation of agents’ interaction focuses mainly on 
the dynamic behavior of the system. UML sequence dia-
grams are adapted to represent interaction diagrams and 
are used as initial representations of agent interactions. 
Interaction protocols are fi nal design artifacts.

Prometheus is tool-supported (Padgham, Thangarajah, 
and Winikoff 2008) by the Prometheus Design Tool 
(PDT) and the JACK Development Environment (JDE). 
PDT allow users to create and elaborate Prometheus 
design. In particular, PDT helps in avoiding the introduc-
tion of inconsistencies, and it provides cross-checking 
that detects other forms of inconsistency. Differently, JDE 
is used for the skeleton code generation from design dia-
grams. It guarantees also that changes made to the code 
are refl ected in the design diagrams and vice versa.

Tropos (Bresciani et al. 2004) is requirement-driven 
in the sense that it is based on concepts used during 
early requirements analysis. Tropos adopts the concepts 
offered by i* (Yu 1995), a modeling framework proposing 
concepts such as actor (actors can be agents, positions, 
or roles), as well as social dependencies among actors, 
including goal, softgoal, task, and resource dependen-
cies. These concepts are used in all software development 
phases of Tropos, from the early requirements analy-
sis down to the actual implementation. Tropos is a full 
tool-supported methodology (Morandini et al. 2008) that 
spans four phases that can be used either following the 
waterfall or the spiral model respectively for sequential 
and iterative development: (1) early requirements, (2) late 
requirements, (3) architectural design, (4) detailed design. 
Although, there are many proposals to integrate Tropos 
with agent-oriented programming frameworks, originally 
Tropos did not support the implementation phase.

Early requirements analysis focuses on the intentions 
of stakeholders. Intentions are modeled as goals. Through 
some form of goal-oriented analysis, these initial goals 
eventually lead to the functional and nonfunctional 
requirements of the system-to-be. In Tropos, stakehold-
ers are represented as (social) actors who depend on each 
other for goals to be achieved, tasks to be performed, 
and resources to be furnished. The Tropos framework 
includes the strategic dependency model for describing 
the network of relationships among actors, as well as the 
strategic rationale model for describing and supporting 
the reasoning that each actor goes through concerning 
its relationships with other actors. A strategic depend-
ency model is a graph involving actors who have strategic 

dependencies among each other. A dependency describes 
an “agreement” (called dependum) between a depend-
ing actor (depender) and an actor who is depended upon 
(dependee). The type of the dependency describes the 
nature of the agreement. Goal dependencies are used 
to represent delegation of responsibility for fulfi lling a 
goal; softgoal dependencies are similar to goal depend-
encies, but their fulfi lment cannot be defi ned precisely 
(for instance, the degree of fulfi lment is subjective); task 
dependencies are used in situations where the dependee 
is required to perform a given activity; and resource 
dependencies require the dependee to provide a resource 
to the depender.

Late requirements analysis results in a requirements 
specifi cation that describes all functional and nonfunc-
tional requirements for the system-to-be. In Tropos, the 
system is represented as one or more actors that partici-
pate in a strategic dependency model, along with other 
actors from the system’s operational environment. In 
other words, the system comes into the picture as one or 
more actors who contribute to the fulfi llment of stake-
holder goals. As late requirements analysis proceeds, the 
system is given additional responsibilities, and ends up as 
the dependee of several dependencies. A strategic ration-
ale model determines through a means-ends analysis how 
the system goals (including softgoals) that were identifi ed 
during early requirements can actually be fulfi lled exploit-
ing the contributions of other actors. A strategic rationale 
model is a graph with four types of nodes—goal, task, 
resource, and softgoal—and two types of links—means-
ends links and decomposition links. A strategic ration-
ale graph captures the relationship between the goals of 
each actor and the dependencies through which the actor 
expects these dependencies to be fulfi lled.

A Tropos system architecture constitutes a relatively 
small, intellectually manageable model of system struc-
ture, which describes how system components work 
together. Tropos offers a catalogue of organizational 
architectural styles for cooperative, dynamic, and dis-
tributed applications—such as multiagent systems—to 
guide the design of the system architecture. These organi-
zational architectural styles are based on concepts and 
design alternatives coming from research in organiza-
tion management. As such, they help match a multiagent 
system architecture to the organizational context within 
which the system will operate.

TOOLS, PLATFORMS,
AND PROGRAMMING LANGUAGES 
(FRAMEWORKS)
For the development of multiagent systems it is neces-
sary to cast the agent concepts and architectures to 
concrete implementation means. In order to avoid the 
burden of constructing agent systems from scratch for 
each new application, several kinds of ancillary tools can 
be employed. In general, the tools can be categorized 
into development tools needed for building an application 
and the runtime infrastructure (called agent platform) 
needed to execute agent applications. An agent platform 
offers the basic management services for hosting agents 
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on a uniform infrastructure and additionally exposes 
ready-to-use communication mechanisms for the agents. 
Conceptually, a blueprint for agent platforms has been 
proposed in the FIPA abstract architecture (cf. the sec-
tion on Tools, Platforms, and Programming Languages 
(Frameworks)). Besides management functionalities, an 
agent platform is characterized by the kind of agents that 
can be executed. Therefore, the development of appli-
cations using an agent platform heavily depends on the 
supported internal and social agent architectures. In this 
respect, the internal architecture determines the concepts 
and mechanisms that can be used for agent behavior 
programming, whereas the social architecture specifi es 
which notions can be used for realizing coordination 
between agents and team management. Technically, a 
platform is characterized by the programming language 
it provides for realizing agents and the available tools for 
development, administration, and debugging.

Today, there is a multitude of commercial and open-
source agent platforms available in the market. Hence, in 
the following, only a broad overview can be given and a 
small cutout of these presented in more detail. In order 
to present a meaningful selection of platforms, agent plat-
forms are categorized based on a coarse classifi cation, 
and one typical representative of each primary category is 
exemplifi ed. This classifi cation scheme, which was initially 
proposed by Braubach and colleagues (2006), is depicted 
in Figure 22.2. It distinguishes platforms by means of 
their primary focus and proposes three main categories: 
middleware, reasoning, and social-oriented platforms.

Middleware Platforms
In the context of distributed systems middleware is seen as 
a software layer between an application and the operating 

system providing generic services that are beyond the func-
tionalities of the operating system and can be reused within 
different kinds of applications (Coulouris, Dollimore, and 
Kindberg 2005). Examples of such functionalities include 
directory services and message passing mechanisms.

In the fi eld of multiagent systems middleware plat-
forms play a similar role and have in common that they 
focus on a sound technological base for the execution of 
agents. Therefore they emphasize aspects such as interop-
erability, robustness, scalability, and mobility. Under this 
point of view, mobile agent toolkits such as Grasshopper 
(Bäumer et al. 1999), which allow agents to migrate 
between different hosts, can also be seen as part of the 
middleware category. The most important characteristic 
supported by nearly all middleware platforms is inter-
operability, which has been realized by the adherence 
to the FIPA standards. In many cases, representatives of 
this category do not use sophisticated agent architectures 
but rather rely on the task model, which assembles the 
overall behavior from simpler behavior modules. For this 
reason, most middleware platforms do not need specifi c 
agent programming languages, and typical mainstream 
object-oriented languages such as Java can be used. In 
the following the JADE platform will be presented as a 
typical representative of the agent middleware category.

JADE overview. The JADE platform (Java Agent 
Development Environment) is developed as open-source 
software by the Telecom Italia Lab (TILAB) since 1998 
(Bellifemine et al. 2005). JADE has a big user community 
and has been adopted for applications from many dif-
ferent areas. As one example Whitestein has used JADE 
to construct an agent-based system for decision-making 
support in organ transplant centers (Calisti et al. 2004).

JADE agent architecture. In JADE, agents are speci-
fi ed in terms of a behavior-based architecture. A behavior 
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corresponds to a task and serves for the encapsulation 
of a specifi c functionality. An agent can be supplied with 
arbitrarily with many behaviors in order to work on dif-
ferent tasks concurrently. The communication among 
behaviors is realized by shared data stores, which can be 
used to make visible processing results for one another. 
For managing complexity, behaviors can be hierarchically 
assembled. The execution of subbehaviors is determined 
by the containing behavior and can be sequential, paral-
lel or based on a fi nite state machine. Each JADE agent is 
executed in a separate thread, which performs a coopera-
tive nonpreemptive scheduling, that is, the agent main-
tains a list of all active top-level behaviors and executes 
one step of each behavior in a round-robin fashion.

JADE language. JADE does not utilize an agent-ori-
ented programming language but instead employs Java 
and offers agent-based functionalities such as message 
sending through an application programming interface 
(API). For a communication language the standardized 
FIPA-ACL (Agent Communication Language) is used, 
which ensures that JADE agents can communicate with 
agents living on other FIPA-compliant agent platforms. 
In addition, JADE supports most of the FIPA content 
languages such as SL (Semantic Language) and RDF 
(Resource Description Framework) for describing the 
message content separately from the rest of the message. 
To facilitate the communication in open systems JADE 
also allows using ontologies for a shared understanding of 
the used domain concepts. If such ontology objects need 
to be transmitted between agents specifi c content encod-
ers and decoders are provided that are able to transform 
the content to a specifi ed content language.

JADE tools. There is a broad range of tools available 
for developing agent applications with JADE. Nonetheless, 
most tools target the administration and debugging of 
multiagent systems, whereas earlier development phases 
are barely supported. As Java is employed for program-
ming agents, common object-oriented integrated devel-
opment platforms (IDEs) such as Eclipse can be used 
without restrictions. The central access point for the stand-
ard runtime tool suite of JADE is the remote monitoring 
agent (RMA), which offers a graphical user interface and 
can be used for starting the other tools. The RMA mainly 
exposes basic management functionalities for starting 
and killing agents. Other runtime tools allow the sending 
of messages to agents (dummy agent) and the stepwise 
execution and monitoring of agent behavior (introspector 
agent). For the debugging of multiagent systems the sniffer 
tool is quite helpful, as it visualizes the messages between 
agents in a style similar to UML sequence diagrams.

Reasoning Platforms
These kinds of platforms center on the internal reason-
ing processes of agents and aim at providing possibilities 
for the effi cient specifi cation and execution of intelligent 
agent behavior. The common characteristic of reasoning 
platforms is that they rely on psychological or philosophi-
cal theories for explaining rational human behavior. Thus, 
the primary aim of platforms from this category consists of 
making those rather abstract theories usable for the con-
crete task of application development. For this purpose 

agent architectures and agent programming languages 
have been conceived which refi ne, extend, and interpret 
the basic theories. In many cases these theories adopt the 
intentional stance (Dennett 1971), which uses human-
centered mentalistic notions such as beliefs and goals for 
behavior explanations. It has been argued that it is useful 
to preserve the intentional stance also for the implemen-
tation of agents, because the notions can be used for such 
matters as simplifying debugging of complex systems 
(McCarthy 1979). Thus, in many cases reasoning plat-
forms encompass newly conceived agent programming 
languages including mentalistic notions. As an example 
reasoning platform Jadex will be further illustrated.

Jadex overview. The Jadex framework has been devel-
oped as an open-source project at the University of Hamburg 
since 2003 (Pokahr, Braubach, and Lamersdorf 2005). It 
follows the BDI model (Bratman 1987) and allows goal-
oriented agents to be built with standard software-
engineering technologies such as Java and XML. Jadex sep-
arates the reasoning engine for managing agent behavior 
from the underlying agent execution infrastructure. Given 
this separation, Jadex can be used in conjunction with dif-
ferent kinds of middleware such as other agent platforms 
(like JADE) or component-based approaches (like J2EE 
application servers). Jadex has been used to realize appli-
cations in different domains such as simulation, schedul-
ing, and business process management. For example, Jadex 
was used to realize a multiagent application for negotiation 
of treatment schedules in hospitals (Paulussen et al. 2006).

Jadex agent architecture. The behavior of an agent is 
defi ned in terms of beliefs, goals, and plans in Jadex. Goals 
represent the motivations of an agent and fi nally determine 
the procedural behavior pursued that is encoded within 
plans. Beliefs represent the knowledge of an agent and 
typically refl ect its perception of the environment, itself, 
and other agents. In Jadex, goals are decoupled from any 
concrete behavior specifi cation and just express what an 
agent wants to achieve, avoid, or maintain from a high-
level perspective. The notion of goals is very similar to its 
general usage and supports many important characteris-
tics such as the possibility for handling strategic long-lived 
as well as more tactical short-term goals. Given that an 
agent can posses an arbitrary number of goals, it is of vital 
importance to decide which of its goals may confl ict and 
what to do if such situations arise. For this purpose Jadex 
offers a generic goal deliberation strategy, which enables 
an agent to reason about its current goals and is driven 
by the overall objective of pursuing only confl ict-free goal 
sets at any point in time. The relationships among goals 
are specifi ed by the agent developer at design time and 
will be enforced by the reasoning engine at runtime. A fur-
ther important step is that an agent has to determine how 
it can achieve these goals. For this purpose PRS means-
end reasoning is used, meaning that appropriate plans are 
dynamically selected and executed for a goal until the goal 
has been achieved or no more plans are available.

Jadex language. Even though Jadex allows for pro-
gramming with mentalistic notions, it does not intro-
duce a new agent programming language but relies on 
the standard languages XML and Java. XML is used for 
the specifi cation of the agent structure according to a 
BDI metamodel, which defi nes the permissive tags and 
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attributes of an agent. In addition, the procedural knowl-
edge of an agent, that is, its plan bodies, can be directly 
programmed in plain Java. Agent-related behavior is 
made accessible through a framework API, which per-
mits, for example, the dispatching of subgoals and the 
reading and writing of belief values. The communication 
language of Jadex depends on the middleware it is used 
with and can, for instance, be made FIPA-compatible by 
using JADE as infrastructure layer.

Jadex tools. Jadex offers various tools for developing 
agent systems and focuses on activities for administra-
tion and debugging. The implementation of agents can 
be done using standard object-oriented IDEs that already 
offer sophisticated programming support for Java as well 
as schema-based XML documents. The tool suite mainly 
consists of the Jadex Control Center, which represents the 
plugin-based entry point for tool components. Besides 
administration tools for starting and stopping agents and 
monitoring the state of directory services debugging tools 
also allow the inspection of an agent’s state as well as its 
stepwise execution. Using the simulation tool it is possible 
to control the advancement of time within an execution

Social Platforms
Social agent platforms underline the importance of coordi-
nation and cooperation aspects within multiagent systems. 
Thus, the focus of social platforms is not so much concerned 
with providing concepts for specifying individual behavior. 
Instead, concepts and mechanisms are targeted that allow 
for setting-up group behavior of teams of agents. These 
systems build upon the already discussed group behavior 
theories and architectures. Due to the lack of integrated 
approaches, the support of agent platforms for the organi-
zational metaphor is rather limited and restricted to either 
the structure or behavior dimension. In the following, the 
MadKit framework will be presented as an example for a 
platform using structural behavior concepts.

MadKit overview. The MadKit (Multi-Agent Develo-
pment kit) platform was  developed as open-source by Fer-
ber and colleagues (Gutknecht, Ferber, and Michel 2001). It 
represents an agent framework adhering to the AGR model 
and therefore takes a structural perspective on organiza-
tion modeling. The platform is based on a microkernel, 
which only includes indispensable services for agent life-
cycle management, group management, and local message 
transport. All further services have been agentifi ed and 
can be added to the kernel on demand. The framework 
has already been used for the realization of applications 
covering a wide range of domains including simulations of 
submarine robots and production line logistics.

MadKit agent architecture. MadKit focuses strongly 
on the organizational view of multiagent systems and 
hence does not implement a specifi c agent architecture to 
be used by an agent programmer. On the one hand, this 
gives agent developers complete freedom about how to 
build their agents manually without further support from 
the framework, but on the other hand this also requires 
him to do so. An agent in MadKit is regarded as an autono-
mous object that can communicate via messages and play 
roles in groups. The framework specifi es from an outside 
view how an agent can be executed, and the adherence to 

this interface is the only restriction MadKit agents need 
to follow. Basically, the platform expects an agent to have 
methods for the initialization, execution, and shutdown 
that will automatically be called by the platform when an 
agent will be executed. MadKit exploits this freedom by 
already providing different simple agent types that can, 
for instance, be rule-based or state-oriented.

MadKit language. In addition to the agent architec-
ture independence of MadKit, the platform also supports 
different (standard) languages for programming agents. 
Besides Java, which is the main language, the platform 
also has built-in support for Scheme, Python, and Jess. 
This allows developers to implement agents with a pro-
gramming language of their choice. The communication 
language of MadKit is also confi gurable. In its basic form, 
agents communicate via simple message objects that can 
contain arbitrary content objects. Using specialized mes-
sage objects it is also possible to transmit FIPA-ACL 
messages. Interestingly, the communication in MadKit is 
also connected to the underlying AGR concepts. Hence, it 
is possible to send or broadcast messages to specifi c roles 
or groups instead of concrete agents.

MadKit tools. The Madkit distribution contains, besides 
the platform, various development and runtime tools. The 
platform offers a MadKit desktop, which contains short-
cuts to the available tools as well as many example appli-
cations. For the implementation of agents a developer can 
make use of source code editors that support the different 
built-in programming languages. In addition, a designer 
tool can be used to set up MadKit projects and associate 
agents and other resources to a project context. At runtime, 
MadKit provides the group observer tool, which makes the 
organizational structures visible and shows which groups 
and agents exist. In addition, the tool allows conversations 
to be visualized as UML sequence diagrams.

APPLICATION AREAS
Scope of Application
Intelligent agents have proven particularly suitable for 
the implementation of applications with the following 
characteristics:

Distribution: Data, information, and knowledge are 
geographically and/or logically distributed and are 
processed as such.

Parallelism/concurrency: The data are processed in 
parallel/concurrently.

Openness: The number and the type of hardware and 
software components involved in the application are 
variable and possibly not precisely known a priori (on 
design).

Embedded in complex (dynamic, unpredictable, lim-
ited transparency, heterogeneous, etc.) socio-technical 
environments (situated applications).

With advancing technological progress, such as computer 
networking and platform interoperability, such applications 
are gaining importance in a broad range of commercial, 
industrial, and scientifi c domains. In general, these three 
characteristics represent a multitude of applications that 

•

•

•

•
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are based on new models of and approaches to computer-
supported information processing, such as grid comput-
ing, peer-to-peer computing, Web computing, pervasive 
and ubiquitous computing, autonomic computing, and 
mobile computing. Their suitability for such applica-
tions ensues from their attributes corresponding with the 
three key attributes of an agent—fl exibility, interactivity, 
and autonomy. First, the characteristics distribution and 
openness imply a distributed and open control structure 
(which enables parallel and concurrent processing) and 
thus the necessity to use software units for the imple-
mentation that can act autonomously (without central 
control). Second, the characteristics openness and embed-
dedness imply the necessity to employ software units that 
are as fl exible as possible, such as software units that are 
capable of acting suitably despite unexpected changes in 
the technological infrastructure or in the user require-
ments. Third, the characteristics distribution, openness, 
and embeddedness imply the necessity to employ soft-
ware units that are capable of interacting as fl exibly and 
autonomously as possible.

Application Domains
The application areas for multiagent systems can be cat-
egorized and described according to different criteria. In 
the literature two rather orthogonal ways of categoriza-
tions can be found: using application sectors and appli-
cation classes. Sectors here refer to the type of business 
such as industry or health care, whereas classes focus 
on the underlying type of solution such as simulation or 
robot control.

Figure 22.3 presents a matrix according to the two 
categorization dimensions sketched before. The choice 
of application sectors used here follows the proposal 
of Jennings and Wooldridge (1998) and adds the mili-
tary domain. A more fi ne-grained breakdown of sectors 
can be found in Luck and colleagues (2005). The selec-
tion of application classes is loosely based on Ferber 
(1999), but also incorporates the proposal of Wooldridge 
(2002). The categorizations of sectors as well as of 

classes should not be considered as complete, but are 
open for further refi nements and extensions. Despite 
this issue, the spanned matrix already allows giving 
an impression of the possibilities of multiagent sys-
tems and an overview of the areas in which they have 
shown to be able to contribute to novel innovative solu-
tions. In the following each of the application sectors 
will be explained in more detail. For further detailed 
overviews of agent applications, see, for instance, Klügel 
(2004) and Parunak (2000).

CONCLUSION
Over the past decade considerable progress has been 
achieved in the fi eld of agent and multiagent technology, 
and, as a result, today intelligent agents and agent-ori-
ented systems are gaining increasing attention in indus-
trial contexts. This attention mainly rests on the insight 
that these systems have a signifi cant application potential 
in a variety of complex domains, and much of the current 
worldwide research on intelligent agents aims at putting 
this potential into practice.

This chapter concentrated on several aspects of intel-
ligent agents that are of particular and direct relevance 
to broad industrial acceptance and dissemination. Other 
facets that are also essential to computational agency but 
are not covered in this chapter due to limited space are, 
for instance, automated negotiation, cooperative plan-
ning, and joint learning; the reader interested in a broader 
depiction of intelligent agents is referred to Weiss (1999) 
and Wooldridge (2002).

GLOSSARY
Agent: A self-contained computational (hard/software) 

entity that handles its tasks in a knowledge-based, fl ex-
ible, interactive, and autonomous way

Agent architecture: Information and control fl ow 
within an agent; more specifi cally, the arrangement of 
data, algorithms, and control structures that an agent 
uses in order to decide on his actions.
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Agent communication language: A formal language 
that allows agents to exchange knowledge and to inter-
act in a sophisticated manner at the knowledge level.

Agent-oriented programming: The programming of 
software in terms of agent-specifi c mentalistic notions 
(e.g., belief and desire) as well as agent-specifi c organi-
zational notions (e.g., group and coalition).

Computational autonomy: The ability of a computational 
entity to act under self-control and to make decisions 
even in complex and perhaps unforeseen situations.

Multiagent system: A system composed of at least two 
agents; often used synonymously to agent system intel-
ligent agent, computational agent, autonomous agent 
software agent → agent.

CROSS REFERENCES
Distributed Intelligent Networks; Expert Systems; Intelligent 
Manufacturing Systems; Web Intelligence.
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