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Abstract. Dyna is a single-agent architectural framework that integrates learn-
ing, planning, and reacting. Well known instantiations of Dyna are Dyna-AC and
Dyna-Q. Here a multiagent extension of Dyna-Q is presented. This extension,
called M-Dyna-Q, constitutes a novel coordination framework that bridges the
gap between plan-based and reactive coordination in multiagent systems. The pa-
per summarizes the key features of Dyna, describes M-Dyna-Q in detail, provides
experimental results, and carefully discusses the benefits and limitations of this
framework.

1 Introduction

Dyna (e.g., [31, 32] and [33, Chapter 9]) is an architectural framework that integrates
learning, planning, and reacting in single agents. This integration is based on two fun-
damental observations that can be summarized as follows:

– “Learning is a valuable basis for both planning and reacting.” Through learning an
agent acquires information that enables him to plan and react more effectively and
efficiently. More specifically, according to Dyna an agent plans on the basis of an
incrementally learnt world model and reacts on the basis of incrementally learnt
values that indicate the usefulness of his potential actions.

– “Both planning and reacting are a valuable basis for learning.” An agent uses the
outcomes of his planning and reacting activities for improving his world model
and the estimates of their actions’ usefulness. More specifically, according to Dyna
planning serves as a basis for trial-and-error learning from hypothetical experience,
while reacting serves as a basis for trial-and-error learning from real experience.

Figure 1 summarizes this interwining of learning, planning, and reacting. This figure is
complemented by Figure 2 which overviews the general flow of control and information
within a Dyna agent. Both real and hypothetical experience are used for updating the
action values. Additionally, real experience (reacting) is employed for learning a world
model which helps to handle hypothetical experience (planning). Two well known in-
stantiations of the Dyna framework are Dyna-AC (Dyna plus actor-critic learning) and
Dyna-Q (Dyna plus Q-learning); see e.g. [31]. An advantage of Dyna-Q over Dyna-AC
is that it is simpler to realize. In particular, Dyna-AC requires two learning rules and
two memory structures (evaluation function and policy), while Dyna-Q requires only
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Fig. 1. Dyna’s relationships between learning, planning, and reacting.

real experience /
reacting

hypothetical experience /
planning

direct
learning

plan-based
learning

model-based
control

model
learning

model

action values / action selection policy

Fig. 2. Dyna’s internal flow of control and information.

one learning rule and one memory structure (which is a cross between Dyna-AC’s two
memory structures).

This paper describes work that extends the Dyna framework to multiagent settings.
Based on Dyna-Q a general coordination framework called M-Dyna-Q for multiagent
systems is proposed that integrates joint learning, joint planning, and joint reactivity. M-
Dyna-Q bridges the gap between two contrary main approaches to multiagent coordina-
tion, namely, plan-based coordination (see e.g. [4–6, 9, 12, 15, 23, 28, 16]) and reactive
coordination (see e.g. [2, 8, 10, 18, 20, 22, 25, 27] and also [7]). The basic idea behind
the former approach is that the agents jointly generate hypothetical activity sequences
on the basis of their world model in order to find out in advance (i.e., before acting in
the real world) what actions among all possible actions are most promising. Against
that, the basic idea behind the latter approach is that the agents jointly generate rapid
reactions on the basis of simple stimulus-response rules that can be carried out by the
agents. A unique key feature of M-Dyna-Q is that it brings together these two contrary
ideas.



The paper is structured as follows. First, Section 2 introduces M-Dyna-Q in detail.
Next, Section 3 describes initial experimental results on M-Dyna-Q. Finally, Section 4
discusses M-Dyna-Q and provides pointers to related work.

2 The M-Dyna-Q Framework

According to the M-Dyna-Q framework the overall multiagent activity results from the
repeated execution of two major joint activities—action selection and learning—, each
running either in real or hypothetical mode. In the most simplest form (which also un-
derlies the experiments reported in the next section), the agents switch between the two
modes at a fixed and predefined rate. The real mode corresponds to (fast) “reactive be-
havior,” whereas the hypothetical mode corresponds to (slower) “plan-based behavior.”
During action selection, the agents jointly decide what action should be carried out next
(resulting in the next real or a new hypothetical state); this decision is made on the basis
of the agents’ distributed value function in the case of operating in the real mode, and
on the basis of the agents’ joint world model in the case of operating in the hypothetical
mode.1 During learning the agents adjust both their world model and their value func-
tion if they act in the real mode, and just their world model if they act in the hypothetical
mode. Below these two major activities are described in detail. Figure 3 conceptually
overviews the basic working cycle of M-Dyna-Q. As this figure shows, every working
cycle runs either in real mode (in this case it is called a real working cycle) or hypothet-
ical mode (in this case it is called a hypothetical working cycle). The Figure 4 illustrates
the flow of control and information within this framework.

Throughout the paper the following simple notation is used and the following ele-
mentary assumptions are made. Ag = {A1, . . . , An} (n ∈ N) denotes the finite set of
agents available in the MAS under consideration. The environment in which the agents
act can be described as a discrete state space, and the individual real and hypothetical
states are denoted by S, T ,U , . . . Acposs

i = {a1
i , . . . , a

mi

i } (mi ∈ N) denotes the set of
all possible actions of the agent Ai, and is called his action potential. Finally, Acposs

i [S]
denotes the set of all actions that Ai could carry out (identifies as “executable”) in the
environmental state S (Acposs

i [S] ⊆ Acposs
i ).

Joint Action Selection. According to M-Dyna-Q each agent Ai maintains state-specific
estimates of the usefulness of his actions for goal attainment. More specifically, an agent
Ai maintains, for every state S and each of his actions aj

i , a quantity Qj
i (S) that ex-

presses his estimate of aj
i ’s state-specific usefulness with respect to goal attainment.

Based on these estimates, action selection works as follows. If the agents operate in
the “real mode”, then they analyze the current real state S, and each agent Ai identifies
and announces the set Acposs

i [S] of actions it could carry out immediately (assuming the
availability of a standard blackboard communication structure and a time-out announce-
ment mechanism). The action to be carried out is then selected among all announced

1 In accordance with common usage in the field of reinforcement learning, here “model” refers
to a mapping from state-action pairs to state-reward pairs, and “value function” refers to a
mapping from state-action pairs to values expressing the estimated usefulness of carrying out
actions in given states.



1. Joint Action Selection:
– the agents choose among mode = real and mode = hypo(thetical)
– if mode = real: state = current real state
– if mode = hypo: state = any previously observed real state
– each agent announces the actions it could carry out in state

– if mode = real: an action is selected from all actions announced in
state with probability proportional to their estimated usefulness,
the selected action is carried out (resulting in a new real state)

– if mode = hypo: an action is randomly choosen from all actions
previously carried out in state (resulting in a hypothetical
successor state)

2. Joint Learning:
– if mode = real: the agent that carried out the selected action

adjusts this action’s estimated usefulness dependent on the usefulness
of the actions applicable in the new real state, and the agents
update their world model

– if mode = hypo: the agent that could carry out the selected hypo-
thetical action adjusts this action’s estimated usefulness dependent
on the usefulness of the actions applicable in the hypothetical suc-
cessor state

Goto 1

Fig. 3. The basic working cycle of M-Dyna-Q.
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Fig. 4. M-Dyna-Q’s flow of control and information in the real (solid lines) and hypothetical
(dotted lines) mode.

actions dependent on the agents’ action selection policy. A standard policy (which was
also used in the experiments reported below) is that the probability of selecting an an-



nounced action aj
i is proportional to the estimated usefulness of all actions announced

in S, i.e.,
eQ

j

i
(S)

e

∑
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j

i

Q
j

i
(S)

(1)

where the sum ranges over all currently announced actions (i.e., over
⋃n

i=1 Acposs
i [S]).

If the agents operate in the “hypothetical mode,” then they (i) randomly choose an envi-
ronmental state S from those real states which they already encountered in the past and
(ii) select an action aj

i from those already carried out in this state according to Equation
(1). This means that in the hypothetical mode the agents simulate real activity and do as
if S is the current real state and aj

i had been selected for execution. Because the agents
only choose hypothetical states that they already know from experience, they avoid
to be forced to make speculative activity decisions under unknown hypothetical envi-
ronmental circumstances. Note that the agents do single-step planning when operating
in the hypothetical mode. This “planning in very small steps” has been adopted from
the single-agent Dyna-Q framework with the intention to enable the agents to redirect
their course of activity without unnecessarily wasted computation and communication
whenever necessary.

Joint Learning. Learning is realized by the agents through adjusting the estimates of
their actions’ usefulness. Suppose that aj

i has been selected in the real or hypothetical
state S and T is the resulting successor state. All agents that could carry out actions
in T inform the agent Ai about these actions’ estimated usefulness. Ai determines the
maximum

maxQl
k(T ) =def max{Ql

k(T ) : al
k is executable in T } (2)

of these estimates and adjusts his estimate Qj
i (S) according to

Qj
i (S) = Qj

i (S) + α · [R + β · maxQl
k(T ) − Qj

i (S)] (3)

where R is the external reward (if any) and α and β are small constants called learning
rates. (maxQl

k(T ) defines, so to say, the global value of the state T .) This adjustment
rule can be viewed as a straightforward multiagent realization of standard single-agent
Q-learning [34, 35] in which the individual Q-values and thus the value function is dis-
tributed over and maintained by several agents. Whereas the adjustment rule is applied
in both the real and the hypothetical mode, the world model is updated by the agents
only if they act in the real mode; this is reasonable because the most reliable way to
improve a world model obviously is to observe the effects of real actions.

3 Experimental Results

We made initial experiments with several synthetic state-action spaces that allow to
efficiently obtain indicative results. This paper describes the results for the state-action
spaces shown in the Tables 1 (SAS1) and 2 (SAS2). SAS1 consists of 18 world states
(0, . . . , 17) and 32 actions that can be carried out by 5 agents. Most of the actions can



a
j

i S T a
j

i S T a
j

i S T

a1

1 0 1 a3

2 1 7 a1

5 3 5
a1

1 6 11 a3

2 15 10 a1

5 5 10
a1

1 7 10 a4

2 6 9 a2

5 3 8
a2

1 4 8 a4

2 10 16 a3

5 5 8
a3

1 8 9 a4

2 4 7 a3

5 0 2
a3

1 10 14 a4

2 12 17 a3

5 2 7
a3

1 11 17 a1

3 6 12 a3

5 8 10
a3

1 12 16 a1

4 2 5 a4

5 12 13
a1

2 0 3 a1

4 7 8 a4

5 4 6
a1

2 3 7 a1

4 0 4 a5

5 1 5
a2

2 5 9 a2

4 2 6 a5

5 9 14
a2

2 14 9 a2

4 9 15 a5

5 11 15

start state: 0 goal state: 17 reward: 1000

Table 1. State-action space SAS1.

a
j

i S T a
j

i S T a
j

i S T a
j

i S T

a1

1 0 1 a1

2 14 18 a3

3 9 14 a3

6 12 18
a1

1 1 10 a1

2 0 2 a1

4 0 4 a4

6 17 3
a1

1 6 15 a2

2 19 3 a1

5 4 9 a1

7 3 9
a2

1 11 20 a2

2 5 9 a1

5 5 10 a1

7 8 14
a2

1 2 6 a2

2 10 14 a1

5 8 13 a2

7 13 19
a2

1 7 11 a2

2 15 19 a1

5 10 15 a2

7 0 5
a3

1 12 16 a1

3 1 6 a1

5 13 18 a2

7 18 4
a3

1 0 21 a1

3 0 21 a1

5 0 21 a2

7 14 20
a4

1 17 1 a1

3 2 7 a1

5 14 19 a2

7 4 10
a4

1 3 7 a2

3 6 11 a1

6 15 20 a2

7 9 15
a4

1 8 12 a2

3 7 12 a1

6 1 7 a3

7 0 21
a4

1 13 17 a2

3 11 16 a2

6 6 12 a3

7 19 5
a4

1 18 2 a3

3 12 17 a3

6 11 17 a4

7 5 6
a4

1 0 21 a3

3 21 6 a3

6 21 9 a4

7 21 5
a5

1 4 8 a3

3 3 8 a3

6 2 8 a4

7 10 11
a5

1 9 13 a3

3 0 3 a3

6 7 13 a4

7 15 16

start state: 0 goal state 1: 16 goal state 2: 20
reward in state 16: 500 reward in state 20: 1000

Table 2. State-action space SAS2.

be carried out in different states (e.g., action a1
1 in the states 0, 6, and 7), and different

actions can be carried out in the same state (e.g., the actions a2
2, a1

5, and a3
5 can be

carried out in state 5). The learning task is to find a sequence of at most 5 actions that
transform the start state 0 into the goal state 17. (An example of a solution sequence
of length L = 4 is < a3

5, a
2
4, a

1
3, a

4
2 >.) Reward is provided only if the goal state

is reached. SAS2 is designed analogously, except that there are two goal states with
different reward levels.
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Fig. 5. Experimental results for SAS1.
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Fig. 6. Experimental results for SAS2.

Figures 5 and 6 show the results for SAS1 and SAS2, respectively. Learning pro-
ceeds by the repeated execution of episodes, where an episode is defined as any se-
quence of at most 5 real working cycles that transform the start state into the goal state
(successful sequence) or into a non-goal state (unsuccessful sequence). The parame-
ter setting was as follows: α = 0.2, β = 0.9, and R = 1000 (SAS1 in state 17),
R = 500/1000 (SAS2 in states 16/20). The initial Q-values were all zero. Each figure
shows four curves: RANDOM (random walk of maximum length 5 through the state-
action space); MDYNAQ[30] (30 hypothetical working cycles after each real working
cycle), MDYNAQ[10] (10 hypothetical experiences after each real experience), and
MYDNA[0] (no hypothetical experiences at all). Each data point shows the mean re-
ward obtained in the previous 20 episodes, averaged over 5 independent runs. The main



observations are as follows. First, MDYNAQ clearly performed better than uninformed
RANDOM search which achieved an average reward level of 64 in the case of SAS1
and 156 in the case of SAS2. This indicates the general performance capacity of M-
Dyna-Q. Second, MDYNA always reached the maximum reward level, even if there
are different reward levels as it is the case with SAS2. This indicates the robustness of
M-Dyna-Q against local performance maxima. Third, MDYNAQ[30] performed bet-
ter than MDYNAQ[10] which performed better than MDYNAQ[0]. On the average,
MDYNAQ[30] (MDYNAQ[10], MDYNAQ[0]) reached the maximum reward level af-
ter about 190 (300, 400) episodes in the case of SAS1 and after about 160 (240, 340)
cycles in the case of SAS2. This indicates how learning based on hypothetical experi-
ences contributes to M-Dyna-Q’s overall performance.

4 Discussion

This paper described a multiagent extension of a single-agent architecture known as
Dyna-Q. This extension, M-Dyna-Q, constitutes a coordination framework that com-
bines the ideas of two contrary main approaches to coordination in multiagent systems,
namely, plan-based and reactive coordination. Each of these two approaches has its
specific advantages and disadvantages:

– An advantage of plan-based coordination is that the probability of carrying out un-
successful activity sequences, which additionally may be expensive and perhaps
even irreversible, is kept low. A disadvantage of this approach is that it is limited
by the accuracy of the world model used by the agents. Another disadvantage is that
it tends to be rather time-consuming and that the computation and communication
costs for coordinating planning activities of multiple agents can grow enormously
with the length of the planning sequences. Both disadvantages are directly corre-
lated with the dynamics of the world in which the agents act and with the number
of agents involved in the planning process—the more dynamic the world is and/or
the more agents are involved, the more challenging it is to cope with these disad-
vantages.

– An advantage of reactive coordination is that it enables agents to rapidly respond to
environmental changes without requiring to equip the agents a priori with complex
and often difficult-to-obtain knowledge about their environment. A disadvantage
of this approach is that concerted interaction and overall coherence can hardly be
achieved through simply applying stimulus-response rules, especially in environ-
ments in which there are inherent dependencies among the agents’ potential actions.
Another disadvantage is that it can lead rather poor performance in environments
in which it is hard (costly, time-consuming, and so forth) to undo the effects of
actions.

Obviously, M-Dyna-Q aims at merging plan-based and reactive coordination such that
there advantages are retained while their disadvantages are avoided.

M-Dyna-Q explicitly integrates joint planning, joint reacting, and joint learning. It is
this integration that makes the M-Dyna-Q unique and different from a number of related



approaches to multiagent activity coordination, including approaches that rely on either
pure planning or pure reaction (see the references provided in Section 1), approaches
that rely on a combination of planning and learning (e.g., [29, 30, 38]), and approaches
that rely on a combination of reacting and learning (e.g., [3, 17, 19, 21, 26, 24, 36, 37]).
M-Dyna-Q can be considered as a generalization of these approaches, and as such it
aims at offering “maximum coordination flexibility.” This is not to say that M-Dyna-
Q is the best choice for every application. However, due to its potential flexibility this
framework seems to be a very promising candidate especially in environments whose
dynamics and coordination requirements are not know in advance.

M-Dyna-Q, in its current form, is limited as follows. First, and most important, M-
Dyna-Q requires the agents to strictly synchronize their action selection and learning
activities. In particular, it requires the agents to sequentialize their actions such that only
one action per working cycle is executed. Obviously, this restricts multiagent systems
in the parallel capabilities they might have in a given application domain, and further
research is necessary to identify and analyze methods for weakening this limitation. A
possible solution may be to take sets of compatible actions rather than individual actions
as the agents’ basic activity units, as done in our previous work (e.g. [37]). Second, M-
Dyna-Q realizes just a very simple form of planning consisting of one-step lookahead
activities of the individual agents. Although this makes sense in a variety of situations
(especially in unknown and highly complex environments), in general it is desirable
and necessary that the agents possess more advanced planning capabilities. Improve-
ment is necessary both w.r.t. a more flexible handling of the planning depth and a more
efficient exploitation of the planning results. Several sophisticated distributed planning
mechanisms have been described in the literature (e.g., see [1]), and to explore the use
of these mechanisms within M-Dyna-Q is another interesting issue for future research.
Third, M-Dyna-Q assumes that the agents can maintain and use a joint world model
without remarkable efforts. This is not necessarily the case in application domains in
which the agents are not aware of all the effects of their actions or in which they sense
different parts of their environment. This limitation requires an extension of M-Dyna-
Q toward distributed modeling and diagnosis, as investigated in e.g. [11, 13, 14]. And
fourth, switching between real mode (reactivity) and hypothetical mode (planning) is
done in a very simple way, and in view of more complex environments there is a need for
a more sophisticated switch control. For instance, switching may occur in dependence
on the overall performance and may be itself subject to learning. “Optimal switching”
constitutes a research theme that is not only of relevance to M-Dyna-Q, but to any mul-
tiagent as well as single-agent approach that aims at bringing together reactivity and
planning.

To summarize, M-Dyna-Q offers a novel perspective of multiagent coordination
based on a unified view of concerted learning, planning, and reacting. What makes
M-Dyna-Q additionally interesting is that it has been directly derived from a single-
agent architectural framework. We think that these features and the encouraging intitial
experimental results clearly justify to say that it is worth to further explore M-Dyna-Q
along the research directions outlined above.
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17. M. Matarić. Reinforcement learning in the multi-robot domain. Autonomous Robots,
4(1):73–83, 1997.
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