Operational Modelling of Agent Autonomy: Theoretical
Aspects and a Formal Language

Gerhard Weif, Felix Fischet:2, Matthias Nickle$, and Michael Rovatsds

1 Department of Informatics, Technical University of Munj@5748 Garching, Germany
{wei ssg, ni ckl es}@n. tum de
2 Department of Informatics, University of Munich, 80538 Mcim Germany
fischerf@cs.ifi.lnmu. de
3 School of Informatics, The University of Edinburgh, Edingla EH8 9LE, United Kingdom
nrovat so@ nf . ed. ac. uk

Abstract. Autonomyhas always been conceived as one of the defining attributes
of intelligent agents. While the past years have seen ceratite progress regard-
ing theoretical aspects of autonomy, and while autonomybkas identified as
an enabler for new computing paradigms such as grid congutiveb-)service-
oriented computing or ubiquitous computing, autonomy asfaware property

is still miles away from implementation. Because of thgal responsibilityof
designers or users for the actions of autonomous softweéntplementation of
autonomy will require rigorous modelling and verificati®o, as to ensure max-
imum dependability. We take a first step in this direction byydducing a for-
mal language\SL (Autonomy Specification Language) that allows for a precise
specification of the activities to be carried out by a set @fag, the deontic con-
straints imposed on these activities, and the implicatafractivity execution on
particular constraints (i.e., constraint dynamics). Agamtonomy is implicit in
anASL specification as the degrees of freedom left to the agenthdarxecution

of activities.

1 Introduction

Since the inception of distributed artificial intelligene@tonomyhas always been con-
ceived as one of the defining attributes of intelligent agdmtthe past years, particular
interest has been paid to the theoretical aspects of autpanthrelated concepts (like
the control of and cooperation between agents), and camadildeprogress has been
made in formally defining these [10, 5]. In addition to théie increasing complex-
ity of software in domains like e/m-commerce, telecommatians, logistics, knowl-
edge management, and simulation of social and economiegses on the one hand
and the identification of autonomy as an enabler for emergifaymation process-
ing paradigms such as grid computing, (web-)service-teoomputing or ubiquitous
computing on the other have given rise to a more generakistér autonomy as soft-
ware property Nevertheless, software systems that tap the full poteottimtelligent
agents and have autonomy aseal property rather than just a catchy label are still

4 This means decision and action choice for working and isterg towards a design objective
even under critical and unexpected circumstances and wigubstantial human support or
intervention.

miles away from implementation. The main reason for thisbigious: while (techni-
cally) each piece of software can be given the autonomy toraits own, it will always

be the designers or users who esponsibldor its actions in a legal sense. Hence, the
only way towards the implementation of autonomy is vigyatematigrocess ofig-
orous modelling and verificatiorso as to ensure maximum dependability of systems
that are given the permission to act autonomously. Withuistdependability, it is un-
likely that autonomously acting agents will be broadly usedhdustrial, commercial
and scientific applications.

We respond to this challenge and take a first step by introduziformal language
ASL (Autonomy Specification Language) that allows for a presjsecification of the
activities to be carried out by a set of agents, the deontistraints imposed on these
activities, and the implications of activity execution cerficular constraints (i.e., con-
straint dynamics). Agent autonomy is implicit in &asL specification as the degrees
of freedom left to the agents for the execution of activitEsthat its type and degree
can be precisely tailored to the task at hakslL further allows for the automatic detec-
tion and handling of norm conflicts, such that conflicts cdhezibe resolved at design
time or appropriate measures can be taken regarding thainte settlement. What
distinguisheASL from existing role- and norm-based models of agent interads
its operational character and its expressiveness and iflgxjiarticularly w.r.t. agent
autonomy.

The remainder of this paper is structured as follows. Se@imtroduce\SL and
gives a formal definition of its syntax. Throughout this gmttthe expressiveness and
flexibility of ASL is illustrated in the context of an agent-based electraaiding plat-
form. Section 3 identifies different types of conflicts in ananomy specification and
proposes strategies for their identification and resatut®ection 4 then discusses the
features oASL, compares it to related work and points to some shortconaingguture
improvements.

2 The Autonomy Specification LanguageASL

The basic view underlyingSL is that agents are embedded in a social frame that regu-
lates their behaviour. This social frame, henceforth datkée spaceis composed of a
set ofroleswhich are available to the agents and through which theyryaio tichieve
individual and joint objectives. An agent may own severésat the same time, and
the same role may be owned by several agents. In the contthisqfaper, roles serve
as a means for specifying desired behaviour and for aclyda@mavioural predictabil-
ity, butnotto make sure that agents never exhibit unexpected and uablesbehaviour
(which would simply be impossible if autonomy is taken sesig). In particular, roles
may not fully specify or constrain the behaviour of potelrdgianers, but leave room for
individuality (so that different agents may fill in the sanogerdifferently, put emphasis
on different aspects, etc.).

Formally, a role inASL consists of a set d@dctivitiesto whichnormsandsanctions
are attached. As the owner of a role, an agent is exposedttteallorms and sanctions
attached to the role-specific activitigsSL distinguishes between three different types
of norms (namely permissions, obligations, and interditg) and two types of sanc-

tions (reward and punishment). While norms correspond tmbieural expectations
held by agents against each other in their capacities avaters, sanctions denote
(potential) consequences of horm-conforming and norntatiitg behaviour. Hence,
through norms and sanctions, a system designer can elpdipécify the limits within
which an agent is supposed to act autonomously, and how liéteare enforced.

2.1 Notational Preliminaries

The syntax ofASL will be given as a set of production rules in extended Badkasr
form (more precisely, these rules resemble a context-fi@amarG, and this grammar
generates the languad€G) of valid ASL specifications). For the sake of readability,
nont er ni nal s (to be replaced) andiSL-specifickeywords andspeci al synbol s (which
both are terminal symbols) are written in different fonts.

2.2 Basic Language Constructs

Role Spaces The most general abstraction employedAsSL is that of a role space
composed of several roles to be played by the individual &gientheir attempt to
achieve their goals. This is captured by the nonterminaé- space- spec® and the

production rule

rol e-space-spec := role space rol e-space-id {role- spec*l
wherer ol e- space-i d is an identifie? composed of lettersL” and digits ‘D” and be-
ginning with a letter, i.e.,

role-space-id == L{L | D}*
rol e-space-id (i.e. any result of its replacement) is referred to asla space identi-

fier. The nonterminal ol e- spec, which allows for the specification of roles as sets of
activities, can be replaced according to the rule

role-spec = rolerole-id {activi ty—spec*l
wherer ol e-i d is arole identifierandact i vi t y- spec is given by the rule

activity-spec :=basic-activity-spec | activating-activity-spec |
deactivating-activity-spec | request-activity-spec

The four nonterminals on the right hand side of this ruleregponding to the different
kinds of activities inASL, are treated in section 2.3.

Example 1.Consider an agent-based electronic supply chain manageystam, for
which the system designers have identified five roles “Ewomipplier”, “US sup-
plier”, “European assembly manager”,“US assembly mariaged “member of the
board of directors”. IFASL, this role structure can be written as

5 Hencey ol e- space- spec is the starting symbol of the gramm@fthat generatessSL.
& All the different kinds of identifiers used throughout thisper are assumed to be defined in
this way, individual identifiers are further assumed to bigjue.

role space eSUPPLY
{ role EUROsupplier{ ...} role USsupplier{...}
~ role EUROamg{ ...} role USamg{...} role MBdir {...} }

where the “...” remain to be filled with the appropriate aityigpecifications.

Variables In ASL, variables can be specified explicitly according to the potidn
rule

vari abl e-spec := variable-id oftype variable-type [variabl e-range]
wherevari abl e-i d is an identifier andari abl e-type is a data type, i.e.,
variable-type := {nat | int | real | bool | char | string | identifier }

All types butidentifier are standard primitive types known from various high-lgwel-
gramming languages. The typentifier , which encompasses all legal identifiers and has
no operations defined on it, serves to enable a designerdctigtly refer to specific
roles and activities (details on these follow below). Opélly, variable domains can
be restricted explicitly by giving possible (ranges of)ued after the type in square
brackets (e.d.1..10Q or [EUROamg, USanig.

Status Statements, Norms, and Sanctiondn ASL, each role is defined through a set
of characteristic activities. Attached to each activityeafch role is at least orstatus
statementhat specifies the norms and sanctions an agent playing kaésrexposed
to with respect to this particular activitASL distinguishes three types of norms —
permission (indicated by the keywopdl, obligation ¢), and interdiction i} to carry
out the activity — and two types of sanctions — rewae)dl énd punishmentp() — that
apply in the case of norm conformance and norm deviatiopgatively.

As we have already said at the beginning of section 2, it isalistic to assume that
agents as autonomous entities do always act in accordatitawsilable norms (espe-
cially in openenvironments characterised by a changing population efrbgéneous,
self-interested agents). Instead, agents may ignore tatgioorms, be it intentional
or not. ASL takes care of this fact by enabling designers to explicigcify the con-
sequences of norm-conforming and norm-deviating behavoterms of positive and
negative sanctions (i.e., reward and punishment). In otleeds, norms alone do not
impose any limitations on possible agent behaviour (sihisei$ impossible due to our
definition of autonomy), they rather work indirectly via tagent’s internal reasoning
about the attached sanctions, making certain behaviolrljwnay be undesirable
from the designer’s point of view) undesirable for the aget&nce, it is the responsi-
bility of the system designer to devise a set of norms thatgpreundesirable behaviour
and the appropriate sanctions to enforce these norms. Iticadtb that, norms can be
coupled to logical conditions that specify the circumsemender which they are valid
and apply.

Alternatively, the three types of norms (in combinationhwitte sanctions attached
to them) can be viewed as different ways to specify the botieslaf agent autonomy:
while obligations and interdictions state which acti\stare outside an agent’s range of
behavioural choice and control, permissions state whitkiges are within. Putting
sanctions aside, an agent may, but need not exeqémaittedactivity — the execution

is neither mandatory (as in the case of an obligation) ndrifloien (as in the case of an
interdiction). Whether or not an agent executes such anitycsiolely depends on his
own decision about how to pursue his goals.

Returning to thé\SL syntax, a designer can distinguish between two differgready
of status statements (i.e. norm-sanction pairs) attached activity:

— independengtatus statements (keywaid) an agent becomes subject to as a direct
consequence of entering the role to which the activity bggoand

— dependenstatus statements (keywarg) an agent as owner of the respective role
only becomes subject to if they are explicitly “activate¢’dnother agent (through
the execution of specialctivating activities details on which are given in sec-
tion 2.3).

Hence, dependent status statements allow for the speidficatadjustable autonomy
[9], and the status statements attached to activatingitesivesemble a kind of “meta-
autonomy” (i.e. autonomy w.r.t. influencing others’ autong, and so on. Formally,
status statements are given by the following rule:

status-statenment-spec = <{ind | deprole-id}> : normspec
[+ sanction-spec]

Thenorm specificationis defined as
normspec = norm <{p | o | i}> <condition>

wherecondi ti on is a standard Boolean expression over the variables of thétyato
which the status statement is attached (evaluatinge®r faise) and denotes when the
norm is actually valid. Theanction specificatiors given by

sanction-spec = sanc <{re | pu}> <sanction-ref>

Details onsancti on-ref will be given at the end of section 2.3, for now it shall suffice
to view sanction-ref as a (unique) identifier referring to a particular sanctidhe
following examples shall illustrate the use of status shatets.

Example 2.Consider a status statemetitd> : norm <p> <tue> attached to an ac-
tivity Deliver of the roleEUROsupplie(a complete specification of this activity will be
provided in example 3 in section 2.3). Accordingly, eachrageeting asEUROsup-
plier is permitted (as indicated kp) to carry out this activity (i.e., to deliver material)
under any circumstances (asndi ti on is true) and without any sanction coupled to
this permission. Being an independent status statemehtdn agent becomes subject
to this permission automatically when entering the BlEROsupplier Further assume
that theDeliver activity containscdep EUROamg : norm <o> < material =" stee! > + sanc

" In fact, for truly autonomous agents (which only judge notrgsthe personal consequences
of attached sanctions) the distinction between differgpés$ of norms does not increase the
expressiveness @fSL, since assigning both a positive and a negative sanctioado activity
would suffice to fully specify the range of behavioural cleoithis is an interesting similarity
to deontic logic, where each of the operators can be defireethe respective other, and we
will return to this aspect in the following section in the text of requests.

<pu> <ChargeFinef00)> as a second status statement. As indicatedigy EUROamd,
this status statement can be activated by agents actingrapéaun assembly manager
(how this can be done is described in the following sectidhyough this activation,
a European supplier (more precisely, an agent owning tleeetaROsuppliey becomes
obliged g) to fulfil all requests for delivering steel (from now on, and matter what
quantity of steel is requested). Moreover, this statugstant says that a violation of
this obligation results in a punishmenti) in the form of a$500 fine (as indicated by
“ChargeFine{00)").

Assuming a Closed World A well known assumption in Al (and the modelling realm
in general) is that of alosed world stating that everything that cannot be shown to be
true is assumed to be fals&SL adopts this principle in that every activity nexplic-
itly declared as being permitted, obligatory or interdictedi@rrcertain conditions), is
implicitly assumed to be interdicted (under these conditidis)software engineering
terms, this corresponds to theast privilegesand complete mediatiodesign princi-
ples for secure software. The former principle states thatsiand programs should be
endowed with as few privileges as possible, and the lattgesthat only those activ-
ities — more specifically, those data accesses — being ékpatiowed should in fact
be executable. Obviously, implicit interdiction also r@gs an implicit sanction to be
effective, which we assume to be the “grounding” sanctioscdbed in the following
section.

2.3 Activity Specifications

Around the status statements defined in the previous seet®will now introduce the
ASL syntax for four different types of activities, nameddpsic activating deactivat-
ing andrequest The nonterminal symbols corresponding to these diffetgms are
basi c-activity-spec, activating-activity-spec, deactivating-activity-spec,
andr equest - act i vi t y- spec, respectively.

Basic Activities All activities that concern the handling of resources anenés are
referred to as basic activities. Examples for resource®tbdndled are time, money,
or data, and examples for events are the access to a dattmskelivery of goods,
the execution of a negotiation protocol, or the responsa ter&ironmental chance. In
ASL, basic activities are specified according to the productide

basic-activity-spec :=actactivity-id(variable-id*)
{ variabl e-spec*;
status range st at us- st at enent - spec*l

whereact i vi ty-i d is an identifier. The activity takes a (possibly empty) lisparam-
eters and contains a specification of all these variablesaapadditional (e.g. global)
ones referred to by the activity specification. At the cor¢hefactivity specification is
a nonempty set of status statements, the activitigus range

8 It should be noted that while practically there is no diffeze between implicit and explicit in-
terdictions, the latter can be useéeliberatively— through the execution of activating activities
—to “override” permissions and obligations.

Example 3.Consider the following basic activity specification as p#rthe roleUs-
suppliet

act Deliver (materia] quantity
{ materialof type string ["steet, "silver', "gold", "platinum'] ,
" quantityof type nat [1.. 100Q;
status range
<ind>: norm <o> <quantity> 100> + sanc <pu> <ChargeFine{00)>
<dep USamg@ : norm <p> <quantity< 100>
<dep MBdir>: norm <i> <quantity> 50and material =" silver' > +
sanc <pu> <WithdrawRole> }

According to the independent status statement of thisiggtar US supplier musto]
fulfil any delivery request with a quantity of at leasi0. If this obligation is violated,
the responsible US supplier has to pay a fine (more precigeyagent who violated
this norm in his capacity as US supplier). What's implicittiis independent status
statement is that delivery of quantitibelow 100 is forbidden, but due to the first de-
pendent status statement a US assembly manager can per§dugpblier to obey such
requests (for any kind of material given in the variable #etion). The second de-
pendent status statement says that a member of the boarectials (Bdir) can forbid
(i) a US supplier to fulfil requests for delivering more than B@tsiof silver. An agent
is no longer allowed to act as US supplier if he violates thierdiction (indicated by
“WithdrawRol&).

Activating and Deactivating Activities As we have already mentionefiSL explic-
itly captures adjustable autonomy (i.e. autonomy that gharover time) and meta-
autonomy (i.e. autonomy w.r.t. influencing others’ autogpimy means of so-called
activating and deactivating activities, which serve tavaté and deactivate dependent
status statements and thus dynamically expose role owmerstain norms and sanc-
tions. TheASL syntax of activating activities is given by the rule

activating-activity-spec :=actactivity-id
activate activity-idofrole-id
{ vari abl e-spec*;
~ status-range-spec;
impact st at us- st at enent - spec™t}

The firstacti vi ty-i d is a unique identifier for the activating activity, while teecond
activity-id and therol e-i d identify the activity being affected. The status state-
ments included in npact - spec are those statements of that activity that are activated
(i.e. the same that occur in the corresponding dependenssttatement). Deactivating
activities (nonterminadeact i vati ng- acti vi t y- spec) are specified analogously with
activate replaced byteactivate (the meaning of this should be clear).

Obviously, a soun@SL specification should include one corresponding activating
activity for each dependent status statement in order tareribat each such statement
can be activated (and also a deactivating activity if it 3tdne possible to deactivate it
afterwards). Compared to that, independent status statsraee inherently active and
they concern agents immediately upon entering a role. lyjriahould be emphasised
that activating and deactivating activities apply at thie iather than the individual

agent level (i.e., a status statement can only be activataalfagents acting as owners
of a particular role).

Example 4.Consider the basic activiteliver of a US supplier as defined in exam-
ple 3. According to the first dependent status statementisfittivity, a US supplier
can be permitted by a US assembly manager to fulfil deliveqyests under certain cir-
cumstances. Consequently, within the roeamgthere should be an activating activity
corresponding to this “permissive” status statement. Agsthat this activating activity
is given by the following specification:

act PermitDeliver
activate Deliver of USsupplier
{ EcosSituationof type string [" poor*, " mediunt, "excellent] ;
"~ status range
<ind>: norm <p> <true>
<dep MBdir>: norm <o> <EcoSituation = poor' > + sanc <re> <EarnBonus(503)
impact
<dep USam@ : norm <p> <quantity< 100> }

As desired, thenpact part includes the first status statement (i.€dep) USame ...")

of the Deliver activity of a US supplier, thus clearly identifying both thetivity to be
affected and the effect of executing the activating agtigiie., US assembly managers
are granted the permission to deliver less than 100 piecasatdrial). The respective
deactivating activity (for example callég@brbidDelive) will only differ by the keyword
activate replaced byieactivate and will have just the opposite effect (in this case revok-
ing the above permission). A pair of corresponding activaéind deactivating activities
hence facilitates the exertion of full control over the adfible autonomy inherent in
a dependent status statement. The semantics of the stagesisathe same across the
different activity types (basic, activating and deacfivg}. Hence, according to the in-
dependent status statement, a US assembly manager istpdr)tto execute this
activating activity (hence to permit US suppliers to fulfélsler requests with an or-
der volume lower than 100) without any restrictionse(). According to the dependent
status statement, a US assembly manager can be obdigey & member of the board
of directors (Bdir) to carry out this activating activity, provided that thevraomic sit-
uation is rated as poor. By following this obligation, a USembly manager earns a
bonus.

Request Activities ASL allows a designer to explicitly specify requests for cargyi
out activities through so-calle#quest activitiesRequest activities may be viewed as
requests for behaving cooperatively by executing the r&gdeactivity. This not only
allows for modelling autonomy w.r.t. issuing requests, dlgb enables a precise defi-
nition of the notion of “not executing an actiari often found in deontic frameworks,
namely as “not executing (immediately)when requestédThe ASL syntax of request
activities is defined quite similar to that of (de)activatectivities by the rule

request-activity-spec :=actactivity-id
request activity-idofrole-id
{ vari abl e-spec*;
" status-range-spec }

with nonterminals as defined above. Again, the fitsti vi t y-i d serves to identify the
request activity, while the second together with ithee- i d refers to the activity being
requested. Observe that the parameters are determineé lgtitity being requested
and need not be specified again. Possible restrictions qgratheneters can be expressed
by means of the request activity’s status range.

Example 5.Assume that the following request activity specificationte part of the
role USamg

act RequestDeliver
request Deliver of USsupplier
{ materialof type string ["steet, "silver', "gold", "platinum'] ,
~ quantityof type nat [1.. 100q ;
status range
<ind>: norm <p> <quantity< 200>
<dep MBdir>; norm <i> <material =gol¢ + sanc <pu> <WithdrawRole }

According to this, a US assembly manager (i.e., an agentsitdgpacity as a US as-

sembly manager) is permitted under certain conditionsi¢edn the status range) to

request US suppliers to deliver certain types of mater@ir(@ly, steel, silver, gold and

platinum). The independent status statement says that as&&nbly manager is per-

mitted to order up to 200 units of material. According to tlependent status statement,
once activated through a member of the board of directorsS as$embly manager is

interdicted to request the delivery of gold.

An important feature w.r.t. the expressiveness and flegjlmf ASL is that activities
of any type can be subject to both (de)activating and reqeisities. In particular, this
means thadSL allows for the formulation of “crossed” and “self-refergtitconstructs
such as requests for requests, requests for disallowitgjcaictivities (i.e. requests for
carrying out activating or deactivating activities) andosn

2.4 Modelling Sanctions and Autonomy Dynamics

So far, we have not given a formal definition of the nontermiaact i on-ref intro-
duced on page 5 and have rather referred to sanctions by dustract identifiers. By
means of request activities, we are now able to introducdwalayet much more ex-
pressive model of sanctioning. This can be done by definings&clactivity for every
action that is to be executed as the result of a sanctionfilgéng a fine, for example),
which is obligatory for every role it is part of. However, tb@responding request activ-
ity (which is required to put this obligation into practisey not normally be executed,
but is triggerecautomaticallyupon norm violatior?.

For sanctions to be of any use in the presence of really aotons agents, failure to
execute a sanctioning activity (which has become obligdigithe “triggered” request)
will again have to be sanctioned, until ultimately sogreunding sanctioris reached

% More precisely, this resembles an executive authoritydbastantly monitors all active norms
and is allowed to execute the corresponding request acthand does so — in case of a norm
violation.

(e.g. role withdrawal, as used in some of the above examflds) enable the use of
sanctioning activities in a status statement, we finallyraefi

sanction-ref o= activity-id(variable-id*)

Example 6.Consider the following definition of a basic activiBayFineas part of the
role USsupplier It takes the amount of the fine as a parameter and is groundedei
withdrawal.

act PayFine(amounj
{ amountof type int ;
" status range
<ind>: norm <o> <true> + sanc <pu> <WithdrawRole }

The corresponding request activity (invoked automatydélUSsupplierviolates certain
norms) then forms part of the role specification for the eigewuthority:

act ChargeFine

request PayFineof USsupplier
{ status range

~ <ind>: norm <p> <true> }

Besides sanctioning, activities that are triggered autmaldy upon norm confor-
mance or violation can also be used for modelling a wide tysaaEautonomy dynamics
like, for example, alternatives in norms, reciprocal narorscontrary-to-duty obliga-
tions. For example, the obligation to do eith€ror Y can be modelled by means of
deactivating activities that remove the obligation foheitof the two as soon the other
one is performed (i.e. as a reward). As an example for contraduties, consider a
contract according to which a seller is obliged to delivansagoods, and a buyer is
obliged to pay a certain price (not necessarily after thedgduwave been delivered).
However, if the buyer fails to pay for the goods, the sellestmo longer deliver them
(in addition to the buyer being fined). This situation can llelled by means of a de-
activating activity which impacts the seller’s obligatifio deliver) and is triggered as
a punishment for violating the obligation to pay. What istjgatarly interesting about
this model of a contract is that the buyer’s refusal to payergoods explicitly excuses
the seller from delivering. The formalisation of these twamples inASL is left to the
interested reader as an exercise.

3 Autonomy-Induced Conflicts

SinceASL does not impose any limitations whatsoever on the diffesémis state-
ments in an activity (e.g., regarding their number or kirtg corresponding norms
may be inconsistent. To this end, we will now define threedggies of autonomy-
induced conflicts in terms of such inconsistencies and stemwthese can be detected
and resolved at design time.

10 By this, we implicitly assume that (at least) this groundgamction can always be enforced.
The existence of such a grounding sanction is crucial fametg control over any system in
which autonomy is involved.

It should be noted that in the context of this paper the teonflictis used to denote
conflicts between norms (as these, and possible other dsrdéiased directly by them,
are the conflicts that can be treated on the level oA8h specification). The (low-
level, design-time) conflict resolution strategies préserere do not address exactly
the same problems as the (high-level, runtime) ones usimaistigated in the context
of agents, like negotiation, mediation, arbitration, €see, e.g. [8, 13]). They should
hence be seen as a supplement (able to completely avoidnciigh-level conflicts)
rather than an alternative.

3.1 Types of Conflicts

In the following, let

S1
S2

<status-typel>: norm <normtypel> <conditionl>...
<status-type2>: norm <normtype2> <condition2>...

be two status statements that are part of the status rangeagtiaity A. S1 andS2 are
then said to constitutegotential conflictif and only if

(i) S1andS2 have one of the following three norm constellations:

e normtypel =o andnormtype2=i (“Ol conflict”)
e normtypel =pandnormtype2=o (“PO conflict”)
e normtypel =pandnormtype2=i (“Plconflict”) and

(i) it can happen thatondi ti on1 andcondi ti on2 evaluate tarve at the same time
(i.e., bothS1 andS2 are applicable for a particular request).

A potential conflict of type Ol turns into an actual conflicttbfs type, if bothS1 and
S2 are activated and a request for executihgs available for which botls1 andS2
are applicable. As mentioned above, permissions implyséatichoice on the part of
an agent, so the situation is somewhat different for cosflidttypes PO and PIl. A
potential conflict of type PO turns into attual PO conflict if additionally the agent
being requested to executk prefersto not executeA (i.e. to not fulfil the request,
which is in accordance with the permissiii) while at the same time being obliged
to (S2). Similarly, a potential conflict of type PI turns into an aat conflict of this
type if additionally the requested agent prefers to exegutee. to fulfil the request in
accordance with the permissidii) while at the same time being interdicted to do so
(52).

Example 7.First, consider the independent status statement and tbedelependent
status statement of thzeliver activity specified in example 3 as part of the rolgsup-

plier. Since the conditions of both evaluaterie for a request of at leas0 units of
silver, they constitute a potential Ol conflict. This carodie understood as a conflict
between the rolegSsupplier(as the independent status statement becomes active auto-
matically through entering this role) amBdir. An example for a potential PO conflict

is given by the two status statements of the activating iigtRermitDelivergiven in
example 4, where both the condition of the independentstiaiement and that of the
dependent statement evaluatede if EcoSituation = poarThis conflict can also be seen

as a conflict between the rolesamg(which includes the activity) ankiBdir (through

which the dependent status statement can be activated)lyi-the two dependent sta-
tus statements of theeliver basic activity constitute a potential PI conflict, as both ar
activated through a request for deliveriaginits of silver wheres1 < 2 < 100. This
may also be understood as a conflict between the tslasngandMBdir, through which
the two status statements can be activated.

3.2 Conflict Detection

As only the status statements of a single activity may leadtdlicts in the above sense,
their detection at design time reduces to a pairwise corspaof status statements and
can be fully automatised by means of the following, rathepdistic, algorithm:
for each role R € rol e-space-spec {
for each activity A € R {
for each 81 € status range of A {
for each S2 € status range of A \ {81} {
if (normtypel and normtype2 are of type O, POor PI) {

test whether there is a variable assignment that satisfies

both conditionl and condition2 } } } }

For conditions encoded in propositional logic (or first artgic with finite do-
mains), the innermost tests are decidable, and at most? of the tests are required,
wheren is the total number of activities for all roles amd is an upper bound for
the number of status statements included in the status raingeparticular activity.
However, a single test may take time exponential in the nurabeariables shared by
condi ti onl andcondi ti on2.

3.3 Conflict Resolution

Given that all potential conflicts in alSL specification can be identified, we will now
present three specific strategies for the resolution of sanflicts. All of them are based
on specifying at design time which of two (or more) confligtimrms will actually be
enforced.

— Norm ordering define an order (a reflexive, antisymmetric, transitivatieh) < 5
on the three norms, i andp, determining which of two norms overrules the other
in case of a conflict. This ordering can partial (e.g.,i < o andp < o) or total
(€.9.i <n 0 <N p).

— Role ordering define a (total or partial) ordexz on roles, determining which of
two roles involved in a conflict dominates the other. Thiatglgy is often found in
human organisations (where the decisions of one role mayémwded by a supe-
rior), and it makes sense because, as we have seen abovdlie between two
status statements can always be attributed to the rolesithwie status statements
belong or by which they have been activated.

— Status statement orderingnpose an orde<g on conflicting status statements.
Again, this order can béotal (in this case meaning that all pairs oénflicting
status statements are orderedpartial.

These strategies differ significantly w.r.t. their gramitya For example, norm ordering
is rather unspecific, but fair in the sense that it is unifoaroas all roles. On the other
hand, status statement ordering allows for respondingnéiicts in a direct and highly
specific manner, but at the risk of resulting in a very hetenggus collection of rela-
tionships between norms. For instance, consider fourstthtements1 to S4 with
nor mtypel = normtype4 7 normtype2 = normt ype3, whereS1 is in conflict with
S2 andS3is in conflict withS4. Irrespective of the individual norm types (but also in a
possibly counterintuitive way), these statements can téered accordingt61 <g S2
andS3 <g S4. Role ordering lies somewhere in between the other twoesfied, but
has the additional appeal of being the most “natural” apgitoa

Most importantly, both total norm ordering and total stadtetement ordering are
guaranteed to resohal OI/PO/PI conflicts (while role ordering obviously doesretj
to resolve conflicts between one and the same role). The déaceean be achieved by
appropriately combining different partial orderings. Baccombination is appealing as
it allows for balancing the specificities of different coofliesolution strategies, but has
to be done carefully because of potential “meta-conflicetiAeen the strategies. For
example, norm ordering and status statement ordering ntayepiain status statements
into a different order. Such meta-conflicts can be resolvetesign time by imposing
an order (i.e., a meta-strategy) on the strategies (oeglydypes) themselves.

Example 8.Again consider the two dependent status statements intindbe status
range of the basic activityeliver defined in example 3. As described above, these state-
ments constitute a potential PI conflict, which can be resblby imposing an order

on permissions and interdictions (i.e.<x i ori <y p). Now assume that the first
dependent status statement (i.&dep USamg : norm <p>...”") should “override” the
second one (i.e.<dep MBdir> : norm <i>..."), while in all other cases the decisions
of a member of the board of directors should overrule thatldSaassembly manager.
This can be realised by imposing the desired order on the t&tassstatements (i.e.,
“<dep USame ..." <g “<dep MBdir> ...") and on the roles (i.eMBdir <z USamg

and by combining these two orderings according to the mestegyS < R.

4 Discussion

After this extensive treatment of tSL syntax, we will now summarise the essential
features ofASL, compare it to related work and point to some shortcomingsc¢hll
for further research.

Features ofASL From the engineering point of viewSL offers two main benefits.
First, itis a highly expressive language that enables desgjo specify agent autonomy
at a very precise level. Consequences of both norm-confayarid norm-deviating be-
haviour can be captured by means of positive and negatiwtisas. Instead of making
any assumptions about norm conformance or deviation, #@gscontrol on agents
via their internal reasoning without limiting their autang. In a way,ASL is neutral
w.r.t. autonomy (i.e. neither biased for nor against it)eTact that no assumptions
whatsoever (e.g. mentalistic or based on social commitsh@né made about the type
or internal structure of agents is also reflected in the faatASL focuses on the role

rather than the individual agent level. Context sensitiait activities and norms (and
thus adjustable autonomy) can be captured by means of thog\eand deactivating ac-
tivities, which may either be executed at will by other agentt follow implicitly in
case of conformance with or deviation from certain normsyuRst activities can be
used to explicitly model cooperation and coordination leetwagents. Finally, nested
activity constructs of arbitrary complexity can be forrsalil in a natural way, such as
requests for requests or requests for activating actviflesecond key feature @fSL

is that it allows for the detection and resolution of autogeimduced conflicts already
at design time. To this end, different types of conflicts aifigent strategies for their
resolution have been identified. While this does not renigr-kevel conflict resolution
techniques usually investigated in the context of ageikis,negotiation, mediation or
arbitration (see, e.qg. [8, 13]) unnecessary, it makes thet ofavhat can already be done
a design time. To have at least a partial alternative to thle-tfével strategies is impor-
tant, because the former are not always applicable in redEveontexts (e.g., due to
limited communication bandwidth, knowledge, or time aahlé to identify potential
compromises and put them into practice).

Related Work There are several existing approaches for modelling therantion
of autonomous agents, mainly in the area of electronictirt&ins and organisations.
[3] introduces an abstract, normative, role-based modeinteractions between au-
tonomous agents within an organisation. This model use®atideemporal logic to
formalise contracts about agents’ capabilities and obitiga. [12] presents a frame-
work for the normative specification of electronic orgatias of autonomous agents at
different levels of abstraction. [11] uses a special deaid action logic, with includes
“acting in a role” as first-order concept, to devise and raaguout role-based models
of groups of autonomous agents. While basL and the above approaches (as well
as several others, e.g. [2,4, 6, 14, 15]) use deontic contespecify (the boundaries
of) autonomous behaviour, there are three main differeiféesly, ASL has been built
top-down for maximum expressiveness and flexibility, eggligon.r.t. agent autonomy.
Secondly, it lends itself very well to an operational or rdgral interpretation, which
is useful when an abstract specification is to be transfoiimtech concrete (i.e. imple-
mentable) agent system. ThirdASL includes a notion of autonomy-induced conflict,
and allows for handling such conflicts and hence reducingniherent contingency of
autonomous systems already at design time. There alss exidbse relationship be-
tweenASL and policy specification languages, in particular the Potateguage [1].
Ponder is a declarative, strongly-typed, and object-tegdtanguage for the specifica-
tion of security policies and for policy-based managemérmoonputer networks and
distributed systems [7]. It is fully implemented and supgpdiby a number of tools.

Future Work In this respect, part of our future research will be concemwéh a
more detailed investigation of the fundamental relatigmétetween agent autonomy
and security policies in general and the languag&sand Ponder in particular. Unlike
PonderASL as defined in this paper does not include the usual (objéetted) con-
structs for role modelling (inheritance, composition, pémd assignment to individual
agents. While this does not limit the expressivenegs3tf, it would be rather cumber-
some to have certain activities (like the “sanctioning’iatt PayFing that are part of a
large number of roles.

On the conceptual side, we see two main shortcomingssafin its current form.
First, it would be desirable to introdu@xplicit time and hence allow for the speci-
fication of deadlines as temporal constraints on normstfieetime interval between
a request, the execution of the corresponding activity &edritiation of a possible
sanction) or other temporal aspects of autonomy (e.g. ntimatsare valid only at a
certain time). Second, giving a formal (e.g. possible wgrkemantics taSL will pro-
vide a proper theoretical grounding and ultimately paventag for model checking the
autonomy-related properties of a system. Our current resealdresses these issues to
further improve the expressivenessAdL and support the engineering of autonomy as
a property of dependable software systems.

References

1. N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The ponddéicpspecification language.
In Proceedings of the 2nd International Workshop on Polictedfistributed Systems and
Networks volume 1995 ot ecture Notes in Computer Scien&istol, UK, 2001. Springer.

2. F. Dignum. Autonomous agents with normastificial Intelligence and Law7:69-79, 1999.

3. V. Dignum. A model for organizational interaction: based on agentsyided in logic PhD
thesis, Utrecht University, The Netherlands, 2004.

4. M. EstevaEletronic institutions: from specification to developméd?hD thesis, IlIA, Spain,
2003.

5. H. Hexmoor, C. Castelfranchi, and R. Falcomsgent autonomyvolume 7 ofMultiagent
Systems, Artificial Societies, and Simulated Organizat{dASA) Kluwer Academic Pub-
lishers, 2003.

6. F. Lopez y Lopez, M. Luck, and M. d’Inverno. Constrainingaomy through norms. In
Proceedings of the First International Joint Conferencefaritonomous Agents and Multia-
gent Systems (AAMAS)002.

7. E. Lupu and M. Sloman. Towards a role based framework f&riduted systems manage-
ment. Journal of Network and Systems Managemb(it):5-30, 1997.

8. H.-J. Muller and R. Dieng, editorsComputational conflicts. Conflict modeling for dis-
tributed intelligent systemsSpringer, Berlin, 2000.

9. D. Musliner and B. Pell. Agents with adjustable autonoRgpers from the AAAI spring
symposium. Technical Report SS-99-06, AAAI Press, Menldk @A, 1999.

10. M. Nickles, M. Rovatsos, and G. Wei3, editoisgents and computational autonomy. Po-
tential, risks, and solutionsolume 2969 (Hot Topics) dfecture Notes in Artificial Intelli-
gence Berlin, Germany, 2004. Springer.

11. O. Pacheco and J. Carmo. A role based model for the neersiecification of organized
collective agency and agents interactialournal of Autonomous Agents and Multi-Agent
Systems (JAAMAS)(2):125-184, 2003.

12. J. SalcedaThe role of norms and electronic institutions in multi-agepstems applied to
complex domainsPhD thesis, Technical University of Catalonia, Spain,200

13. C. Tessier, L. Chaudron, and H.-J. Muller, edit@snflicting agents. Conflict management
in multiagent systemwolume 1 ofMultiagent Systems, Artificial Societies, and Simulated
Organizations (MASA)KIuwer Academic Publishers, 2000.

14. H. VerhagenNorm Autonomous Agent®hD thesis, Department of System and Computer
Sciences, The Royal Institute of Technology and Stockhohivéisity, 2000.

15. G. Weil3, M. Rovatsos, M. Nickles, and C. Meinl. Capturaggnt autonomy in roles and
XML. In Proceedings of the Second International Joint Conferemc@&wonomous Agents
and Multiagent Systems (AAMA®ages 105-112, 2003.

