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Negotiation among computational autonomous agents has gained rapidly growing interest in previous
years, mainly due to its broad application potential in many areas such as e-commerce and e-business.
This work deals with automated bilateral multi-issue negotiation in complex environments. Although
tremendous progress has been made, available algorithms and techniques typically are limited in their
applicability for more complex situations, in that most of them are based on simplifying assumptions
about the negotiation complexity such as simple or partially known opponent behaviors and availability
of negotiation history. We propose a negotiation approach called OMACw that aims at tackling these
problems. OMACw enables an agent to efficiently model opponents in real-time through discrete wavelet
transformation and non-linear regression with Gaussian processes. Based on the approximated model the
decision-making component of OMACw adaptively adjusts its utility expectations and negotiation moves.
Extensive experimental results are provided that demonstrate the negotiation qualities of OMACw, both
from the standard mean-score performance perspective and the perspective of empirical game theory.
The results show that OMACw outperforms the top agents from the 2012, 2011 and 2010 International
Automated Negotiating Agents Competition (ANAC) in a broad range of negotiation scenarios.
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1. Introduction

Agent-based negotiation is about computational autonomous
agents that attempt to arrive at joint agreements in competitive
consumer-provider or buyer–seller scenarios on behalf of humans
(Jennings et al., 2001). As one of the most fundamental and power-
ful mechanisms for solving conflicts between parties of different
interests, recent years have witnessed a rapidly growing interest
in automated negotiation, mainly due to its broad application
range in fields as diverse as electronic commerce and electronic
markets, supply chain management, task and service allocation,
and combinatorial optimization. As a result, agent-based negotia-
tion brings together research topics of artificial intelligence,
machine learning, game theory, economics, and social psychology
(Chen, Hao, Weiss, Tuyls, & Leung, 2014).

Dependent on the assumptions made about the negotiating
agents’ knowledge and the constraints under which the agents
negotiate, negotiation scenarios show different levels of complex-
ity. The following assumptions, which are reasonable in view of
real-world applications and which underly our work, induce high
complexity and raise particular demands on the abilities of the
negotiators. First, the agents have no usable prior information
about their opponents – neither about their preferences (e.g., their
preferences over issues or their issue value ordering) nor about
their negotiation strategies. Then, the negotiation is constrained
by the amount of time being elapsed, the participants therefore
do not know at any time during negotiation how many negotiation
rounds there are left and they have to take into account at each
time point (i) the remaining chances for offer exchange and (ii)
the fact that the profit achievable through an agreement decreases
over time (‘‘negotiation with deadline and discount’’). Third, each
agent has a private reservation value below which an offered con-
tract is not accepted.1 Thereby we adopt the common view that an
olution.
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agent obtains the reservation value even if no agreement is reached
in the end. This implies that breaking-off a negotiation session
would be potentially beneficial especially when the time-discount-
ing effect is substantial and the other side is being very tough.
Together these assumptions make negotiations complicated (yet
realistic), where efficiently reaching agreements are particularly
challenging. We thus refer to such type of negotiations as complex
negotiations afterwards.

Although there exist many research efforts to address the prob-
lems of complex negotiations over the past years, two issues still
stand out. The first one relates to learning unknown opponents’
strategies. While it has been realized by early work that a success-
ful negotiation needs to be based in one way or another on learning
opponent models, the existing learning approaches either are lim-
ited in their usage in complex negotiations due to the impractical
assumptions made about the environment, or have low efficacy
in modeling opponents. The other issue is the absence of a deci-
sion-making mechanism that is suited for complex negotiations
(i.e., the way of how to concede towards opponents in the course
of negotiation). The strategies available to complex negotiation
tend to consider concession in an intuitive fashion, or neglect the
problem of ‘‘irrational concession’’ (see Section 5.2). As a result,
the current decision-making methods are not adaptive and effec-
tive to respond to the high uncertainty of complex negotiations.

Based on the above motivation, this work proposes a novel
strategy called OMACw for complex negotiations to address the
aforementioned two issues that could further improve perfor-
mance of a negotiating agent. In particular, it extends the OMAC
negotiation strategy, which we introduced in Chen and Weiss
(2012), in several important aspects (as detailed in Section 2).
The proposed approach manages to integrate two key aspects of
a successful negotiation: efficient opponent modeling and adaptive
decision-making. Opponent modeling realized by OMACw aims at
predicting the utilities of opponent future counter-offers (for itself)
and is achieved through two standard mathematical techniques
known as discrete wavelet transformation (DWT) and Gaussian
processes (GPs). Adaptive decision-making realized by OMACw

consists of two components, namely, concession making and coun-
ter offer responding, and it employs the learnt opponent model to
automatically adjust the concession behavior and the response to
counter-offers from opponents.

The remainder of this article is structured as follows. Section 2
overviews important related work. Section 3 provides the negotia-
tion environment that we have considered. Section 4 describes the
main mathematical techniques exploited by OMACw. Section 5
shows the technicalities of the proposed strategy. Sections 6 and
7 offer a careful empirical evaluation and game-theoretic analysis
of OMACw. Section 8 discusses some interesting experimental
results and other related aspects of agent-based negotiation.
Finally, Section 9 identifies some important research lines induced
by the work.

2. Related work

Negotiation has traditionally been investigated in game theory
(Osborne & Rubinstein, 1994; Raiffa, 1982) and in previous years
it has also developed into a core topic of multiagent systems
(e.g., Lopes, Wooldridge, & Novais, 2008; Mor, Goldman, &
Rosenschein, 1996; Weiss, 2013). Numerous approaches to auto-
mated negotiation have been proposed that, like the one described
in this work, explore the idea to equip an agent with the ability to
build a model of its opponent and to use this model for optimizing
its negotiation behavior. Modeling the opponent’s behavior, how-
ever, is practically challenging because negotiators usually do not
reveal their true preferences and/or negotiation strategies in order
to avoid that others exploit this information to their advantage
(e.g., Coehoorn & Jennings, 2004; Raiffa, 1982). Current methods
however tend to make simplifying assumptions about the negotia-
tion settings. For example, there are approaches that deal with sin-
gle-issue negotiation and others that assume that the opponents
have a rather simple (e.g., non-adaptive) behavior, or the negotia-
tions take place in scenarios with a low dimension (e.g., a small
number of issues and possible choices for each of them). In the fol-
lowing, representative model-based negotiation approaches are
overviewed.

Many of the available approaches aim at learning opponents’
preferences or the reservation value. Faratin, Sierra, and Jennings
(2002) propose a trade-off strategy to increase the chance of getting
own proposals accepted without decreasing the own profit. The
strategy applies the concept of fuzzy similarity to approximate
the preference structure of the opponent and uses a hill-climbing
technique to explore the space of possible trade-offs for its own
offers that are most likely to be accepted. The effectiveness of this
method highly depends on the availability of prior domain knowl-
edge that allows to determine the similarity of issue values.
Coehoorn and Jennings (2004) propose a method using Kernel Den-
sity Estimation for estimating the issue preferences of an opponent
in multi-issue negotiations. It is assumed that the negotiation his-
tory is available and that the opponent employs a time-dependent
tactic (i.e., the opponent’s concession rate depends on the remain-
ing negotiation time, see, e.g., Faratin, Sierra, & Jennings (1998)
for details on this kind of tactic). The distance between successive
counter-offers is used to calculate the opponent’s issue weights
and to assist an agent in making trade-offs in negotiation. Some
approaches use Bayesian learning in automated negotiation. For
instance, Zeng and Sycara (1998) use a Bayesian learning represen-
tation and updating mechanism to model beliefs about the
negotiation environment and the participating agents under a
probabilistic framework; more precisely, they aim at enabling an
agent to learn the reservation value of its opponent in single-issue
negotiation. Another approach based on Bayesian learning is pre-
sented in Lin, Kraus, Wilkenfeld, and Barry (2008). Here the usage
of a reasoning model based on a decision-making and belief-update
mechanism is proposed to learn the likelihood of an opponent’s
profile; thereby it is assumed that the set of possible opponent pro-
files is known as a priori. Hindriks and Tykhonov (2008) present a
framework for learning an opponent’s preferences by making
assumptions about the preference structure and rationality of its
bidding process. It is assumed that (i) the opponent starts with opti-
mal bids and then moves towards the bids close to the reservation
value, (ii) its target utility can be expressed by a simple linear
decreasing function, and (iii) the issue preferences (i.e., issue
weights) are obtainable on the basis of the learned weight ranking.
Moreover, the basic shape of the issue evaluation functions is
restricted to downhill, uphill or triangular. In order to further
reduce uncertainty in high-dimensional domains, issue indepen-
dence is assumed to scale down the otherwise exponentially grow-
ing computational complexity. Oshrat, Lin, and Kraus (2009)
developed an effective negotiating agent for effective multi-issue
multi-attribute negotiations with both human counterparts and
automated agents. The successful negotiation behavior of this agent
is, to a large extent, grounded in its general opponent modeling
component. This component applies a technique known as Kernel
Density Estimation to a collected database of past negotiation ses-
sions for the purpose of estimating the probability of an offer to
be accepted, the probability of the other party to propose a bid,
and the expected averaged utility for the other party. The estima-
tion of these values plays a central role in the agent’s decision mak-
ing. While the agent performs well, the approach taken is not suited
for the type of negotiation we are considering (real-time, no prior
knowledge, etc.) because opponent modeling is done offline and
requires knowledge about previous negotiation traces.
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Other available approaches aim at learning the negotiation
strategy and decision model of the opposing negotiator. For
instance, Saha, Biswas, and Sen (2005) apply Chebychev’s polyno-
mials to estimate the chance that an opponent accepts an offer
relying on the decision history of its opponent. This work deals
with single-issue negotiation, where an opponent’s response can
only be an accept or a reject. Brzostowski and Kowalczyk (2006)
investigate online prediction of future counter-offers on the basis
of the past negotiation exchanges by using differentials. They
assume that there mainly exist two independent factors that influ-
ence the behavior of an opposing agent, namely, time and imita-
tion. The opponent is assumed to apply a weight combination of
time- and behavior-dependent tactic.2 Hou (2004) presents a learn-
ing mechanism that employs non-linear regression to predict the
opponent’s decision function in a single-issue negotiation setting.
Thereby it is assumed that the opponent behavior can only be
time-, behavior- or resources-dependent (with decision functions
as proposed in Faratin et al. (1998)). In Carbonneau, Kersten, and
Vahidov (2008), an artificial neural network (ANN) is constructed
with three layers that contain 52 neurons to model a negotiation
process in a specific domain. The network exploits information about
past counter-offers to simulate future counter-offers of opponents.
The training process requires a very large database of previous offer
exchanges and huge computational resources, and therefore cannot
be applied to complex negotiations considered in this work.

Recently, there is a growing body of work dealing with complex
negotiations by means of learning opponent strategy. Some good
examples are Williams, Robu, Gerding, and Jennings (2011), Chen
and Weiss (2013), Chen, Ammar, Tuyls, and Weiss (2013), Chen
and Weiss (2014) and Hao, Song, Leung, and Ming (2014). In the
work of Williams et al. (2011), the authors employ Gaussian pro-
cesses to learn opponent models. The learnt opponent model can
provide a negotiating agent with the estimated maximal opponent
concession so that the agent could optimize its own expected util-
ity. However, suffering from the problem of ‘‘irrational concession’’
(as we will discuss later in Section 5.2), it tends to misinterpret the
intention of opponents, especially in the case of competing against
tough opponents. As a result, this approach fails to perform efficient
negotiations with other state-of-the-art negotiation strategies.
Chen and Weiss (2014) introduce a negotiation strategy based on
a variant of Gaussian processes regression model. Instead of finding
solutions to further improving learning performance, the main
focus of the strategy is on alleviating the computational complexity
of learning opponent models. In the work of Chen and Weiss (2013)
the authors explore a combination of Empirical Mode Decomposi-
tion (EMD) and Autoregressive Moving Average (ARMA) to cope
with complex negotiation scenarios. Their approach generates a
decomposition of the time series based on the received utilities of
past counter-offers into a finite number of simpler components,
which allow for an easier subsequent utility prediction for each
component. A major drawback of the approach is that it has compa-
rably high prediction errors (see the model comparison shown in
Table 4). This is because the approach has to perform N prediction
tasks simultaneously (where N equals the number of simpler com-
ponents) and thus the complexity of regression techniques under
consideration must be kept low, thereby making more powerful
regression methods (which also require higher computation load)
inapplicable. Another weakness of this approach is that the offer-
generating component proposes new offers in a simple random
way, thus limiting negotiation efficacy. Hao et al. (2014) propose
another successful approach for complex negotiations. The
approach attempts to concede toward opponents as less as possible
2 The concepts of time-dependent and behavior-dependent tactics were introduced
in Faratin et al. (1998).
through adjusting the so-called non-exploitation time point. Fur-
thermore, in order to improve the likelihood of its own proposals
being accepted, the authors also employ a reinforcement-learning
based approach to predict the optimal offers for the other negotia-
tion party. In addition, a novel knowledge transfer method of learn-
ing opponent models for negotiating agents based on deep learning
machines is developed in Chen et al. (2013). This method, while
useful, varies in that its successful operation needs the knowledge
of previous negotiation tasks against the opponents, which are
not available in complex negotiations (please note the definitions
given in Section 1).

Therefore, learning opponent models in existing literature is
either inefficient or limited in usage due to the impractical
assumptions. Moreover, an adaptive concession-making mecha-
nism is also lacking in this filed. Against this background, this work
describes OMACw (as an improved version of OMAC) that advances
the state-of-the-art of complex bilateral multi-issue negotiations
in three significant ways. First, it adopts a new learning scheme
for opponent modeling that can effectively predict opponent
behavior in real time through Gaussian processes and discrete
wavelet transformation. Second, an improved concession-making
mechanism is provided that takes into account the agent’s esti-
mated real reservation utility and a high-confident estimate of
the forthcoming opponent concession for making adaptive conces-
sion in response to the high uncertainty of complex negotiations.
And third, it has an enhanced response mechanism that supports
an agent in selecting offers with high acceptance probability for
its opponents and in determining when to withdraw from a nego-
tiation session. Together these new features result in a consider-
ably more effective and adaptive negotiation strategy, as shown
by the experimental results that also include a direct comparison
of OMACw and OMAC.

3. Negotiation environment

The work described here adopts a bilateral negotiation environ-
ment that is widely used in the agents field (e.g., Baarslag et al.,
2013; Faratin et al., 2002; Hao et al., 2014; Williams et al., 2011).
The negotiation protocol is based on the standard alternating offers
formalized in Rubinstein (1982) but in a real-time manner. Let
I ¼ fa; bg be a pair of negotiating agents, i represent a specific agent
(i 2 I), J be the set of issues under negotiation, and j be a particular
issue (j 2 f1; . . . ;ng where n is the number of issues). The goal of a
and b is to establish a contract for a product or service. Thereby a
contract consists of a package of issues such as price, quality and
quantity. Each agent has a minimum payoff as the outcome of a
negotiation; this is called the reservation value #. Further, wi

j

(j 2 f1; . . . ;ng) denotes the weighting preference which agent i
assigns to issue j. The issue weights of an agent i are normalized
summing to one (i.e.,

Pn
j¼1ðwi

jÞ ¼ 1). During a negotiation session
agent a and b act in conflictive roles that are specified by their pref-
erence profiles. In order to reach an agreement they exchange
offers (i.e., O) in each round to express their demands. An offer is
thereby a vector of values, with one value for each issue. The utility
of an offer for agent i is obtained by the utility function defined as:

UiðOÞ ¼
Xn

j¼1

ðwi
j � V

i
jðv jkÞÞ; ð1Þ

where v jk is the kth value of the issue j and Vi
j is the evaluation func-

tion for agent i, mapping a value of issue j (e.g., v jk) to a real number.
Negotiation considered here is time-limited rather than

restricted by a fixed number of rounds. Specifically, negotiators
have a shared deadline by when they must have completed the
negotiation; this deadline is denoted by tmax. If no agreement is
reached at the end or one side breaks off before deadline, the
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Fig. 1. 4-Level decomposition of the utilities series v obtained from IAMhaggler2011 in the negotiation domain Airport site selection using DB10. The vertical axis shows score
and the horizontal axis represents the percentage of time (%). The 4-level DWT decomposes the original input v into five sub-components including d1 . . .d4 (detail parts) and
a4 (approximation part). The resulting components are shown below v, their frequency increases from d1 to d4 (i.e., they are more and more smooth). The final approximation
part – a4 is the long-term trend of v.
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negotiation then ends up with the disagreement solution. Note
that the number of remaining rounds are not known and the
outcome of a negotiation depends crucially on the time sensitivity
of the agents’ negotiation strategies. This holds, in particular, for
discounting domains, in which the utility is discounted with time.
We define a so-called discounting factor d (d 2 ½0;1�) and use this
factor to calculate the discounted utility as follows:

DdðU; tÞ ¼ U � dt ð2Þ

where U is the (original) utility and t is the standardized time
(i.e., t 2 ½0;1�). As an effect, the longer it takes for agents to come
to an agreement the lower is the utility they can achieve. Note that
a decrease in d increases the discounting effect.

Upon receiving a counter-offer from the opponent, Oopp, an
agent decides on acceptance, rejection and withdrawal according
to the interpretation of its reasoning model.3 For instance, the
acceptance decision can be made in dependence on a certain thresh-
old Thresi: agent i accepts if UiðOoppÞP Thresi, and rejects otherwise.
As another example, the decision could be based on differences in
successive utilities.
4. Techniques for opponent modeling

This section briefly introduces the two main techniques used by
OMACw for modeling opponents – discrete wavelet transformation
(Section 4.1) and Gaussian processes (Section 4.2). OMACw uses
discrete wavelet transformation to extract the previous main trend
of an ongoing negotiation. After that it employs Gaussian processes
to predict the future main trend.
3 If the agents know each other’s utility functions, they can compute the Pareto-
optimal contract (Raiffa, 1982). However, a negotiator will not make this information
available to its opponent in competitive settings.
4.1. Discrete wavelet transformation

Discrete wavelet transformation (DWT) is a type of multi-
resolution wavelet analysis that provides a time–frequency repre-
sentation of a signal and, based on this, it is capable of capturing
time localizations of frequency components. DWT has become
increasingly important and popular as an efficient multi-scaling
tool for exploring features. This is due to the fact that it can offer
with modest computational effort high-quality solutions (with
complexity O(n)) to non-trivial problems such as feature extrac-
tion, noise reduction, function approximation and signal compres-
sion. OMACw employs DWT to extract the main trend of the
opponent’s concession over time from its previous counter-offers.
In the following, aspects of DWT are described that are relevant
to OMACw; further details can be found in, e.g., Daubechies
(2006) and Ruch and Fleet (2009).

In DWT a time–frequency representation of a signal is obtained
through digital filtering techniques, where two sets of functions
are utilized: scaling functions using low-pass filters and wavelet
functions using high-pass filters. More precisely, a signal is passed
through a series of high pass filters to analyze the high frequencies,
and similarly it is passed through a series of low pass filters to ana-
lyze the low frequencies. In so doing, DWT decomposes a signal
into two parts, an approximation part and a detail part. The former
is smooth and reveals the basic trend of the original signal, and the
latter is rough and in general corresponds to short-term noise from
the higher-frequency band.

The decomposition process can be applied recursively as
follows:

ylow½k� ¼
X

n

f ½n� � h½2k� n�

yhigh½k� ¼
X

n

f ½n� � g½2k� n�
ð3Þ
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Fig. 2. Illustration of the prediction ability of OMACw. The dash-dot line indicates
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results shown in this figure are achieved in the negotiation domain Flight booking
when playing against the agent Agent_K (more detail on domains and agents is
given in Section 6.1).
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with f ½n� being the signal, h½n� a halfband high-pass filter, g½n� a
halfband low-pass filter, and ylow½k� and yhigh½k� the outputs of the
low-pass and high-pass filters, respectively. The iterative applica-
tion of DWT results in different levels of detail of the input signal;
in other words, it decomposes the approximation part into a ‘‘fur-
ther smoothed’’ component and a corresponding detail component.
The further smoothed component contains longer period informa-
tion and provides a more accurate trend of the signal. For instance,
f can firstly be decomposed into a rough smooth part (a1) and a
detail part (d1), and then the resulting part a1 can be decomposed
in finer components, that is, a1 ¼ a2 þ d2, and so on. This iterative
process is captured by the below diagram:

f � � � a1 � � � a2 � � � a3 � � � an

. .
. . .

. . .
.

d1 d2 d3 � � � dn

where a1; a2; . . . ; an are the approximation parts and d1;d2; . . . ;dn

are the detail parts of f.
Daubechies wavelets are a family of orthogonal wavelets

defining a DWT. They are applied for solving a range of problems,
e.g., self-similarity properties of a signal, fractal problems, signal
discontinuities, etc. The results reported in this article are achieved
through wavelet decomposition using the Daubechies’ wavelets of
order 10 (referred to as ‘‘DB10’’ afterwards). We use the notation
below to represent the decomposition relation in our case:

v ¼ xþ
Xk

n¼1

dn ð4Þ

where v is the time series (i.e., the maximum utilities of counter-
offers over intervals, refer to Section 5.1), x represents the n-layer
approximation component of v; dn is the n-layer detail part, and k
the number of decomposition level.

A concrete example of applying DWT in negotiation is given in
Fig. 1, which shows the curve of the received utilities (i.e., the ori-
ginal signal) in the domain Airport site selection when negotiating
with the agent IAMhaggler2011 (more information about domains
and agents can found in Section 6.1). The decomposition results
were obtained with k ¼ 4. The curve at the top of figure represents
v; dn is the detail component of the nth decomposition layer and a4

is the approximation on the final layer (i.e., the fourth), corre-
sponding to x in Eq. (4). This figure clearly shows that a4 is a pretty
good approximation of the main trend of the original signal. As can
be seen, the noise/variation represented by those detail compo-
nents (e.g., d1 to d4) is irrelevant to its trend.

4.2. Gaussian processes

OMACw adopts Gaussian processes (GPs) to learn an opponent
model that does not only allow to make confident predictions
but also provides a measure of the level of confidence in the pre-
dictions. GPs are an important tool in statistical modeling and
are widely used to perform Bayesian nonlinear regression and clas-
sification. In the following, main aspects of GPs relevant to OMACw

are overviewed; for a detailed discussion we refer to Rasmussen
and Williams (2006).

Formally, GPs are a form of nonparametric regression that
perform inference directly in the functional space. Specifically,
GPs define probability distributions over functions. Let D ¼ fxðiÞ;
yðiÞgn

i¼1 be a data set where x 2 Rd is the input vector, y 2 R the out-
put vector and n is the number of available data points. When a
function is sampled from a GP, we write:

f ðxÞ � GPðmðxÞ; kðx;x0ÞÞ

where mðxÞ is the mean function and kðx;x0Þ the covariance func-
tion. mðxÞ and kðx;x0Þ can fully specify a GP. A common assumption
is that GPs have mean zero, which greatly simplifies calculations
without loss of generality. We also follow this view in the work.

Rasmussen and Williams (2006) present a wide variety of
covariance functions. In this work the Mat�ern covariance function
is selected because it is robust and can be computed in real time
settings:

kyðx;x0Þ ¼ a2 21�m

CðmÞ

ffiffiffiffiffiffi
2m
p

r
‘

 !m

Km

ffiffiffiffiffiffi
2m
p

r
‘

 !
ð5Þ

with r denoting the Euclidean distance between x and x0. The posi-
tive parameters a and ‘ determine the amplitude and length-scale,
respectively, the positive parameter m controls the smoothness of
the sample functions, Kmð�Þ is a modified Bessel function
Abramowitz and Stegun (1965), and Cð�Þ is the Gamma function
with the form CðzÞ ¼

R1
0

tz�1

et dt.

As the data in GP modeling can be represented as a sample from
a multivariate Gaussian distribution, we have the following joint
Gaussian distribution:

y
yT

� �
� N 0;

KN KNT

KTN KT

� �
þ r2

nI
� �

ð6Þ

where K is the covariance matrix, Kij ¼ kyðxi;xjÞ; rn the noise
variance, I is the identity matrix, N is the size of the training set,
and T is the size of test inputs. The resulting predictive distribution
is then obtained by conditioning on the observed target outputs
(i.e., response variables) and is given by:

pðyT jyÞ ¼ N ðlT ;RTÞ; ð7Þ

where lT and RT are defined as

lT ¼ KTN½KN þ r2
nI��1

y ð8Þ

RT ¼ KT � KTN½KN þ r2
nI��1

KNT þ r2
nI ð9Þ

Finally, learning in a GP setting involves maximizing the marginal
likelihood given by

L ¼ log pðyjX; hÞ

¼ �1
2

yT Kþ r2
nI

� ��1
y � 1

2
log jKþ r2

nIj � n
2

log 2p ð10Þ
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where y 2 Rm�1 is the vector of all collected outputs, X 2 Rm�d is the
matrix of the input data set, and K 2 Rm�m is the covariance matrix
with j � j representing the determinant. We briefly mention here that
a desirable property of GPs is that they automatically avoid overfitting.

Fig. 2 illustrates the prediction ability of GPs in the context of
automated negotiation. It shows the actual and predicted approx-
imation parts (i.e., x) of concession curve of the opponent
‘‘Agent_K’’ at different time points. As can be seen, the prediction
is accurate in the light of the actual data points, while the errors
naturally grow in regions outside the training data where there
is high uncertainty about the approximated function.

5. The OMACw strategy

OMACw is composed of two functional core components. First,
an opponent-modeling component (described in Section 5.1),
which learns a model of the opponent through a combination of
discrete wavelet decomposition and non-parametric regression.
Second, a decision-making component, which is responsible for
adaptively making concessions (Section 5.2) and for appropriately
responding to a counter-offer (Section 5.3) on the basis of the
learnt opponent model. Algorithm 1 shows OMACw at a glance,
the individual steps are explained below.

Algorithm 1. The OMACw strategy. Let tc be the current time,
d the time discounting factor, and tmax the deadline of
negotiation. Oopp is the latest offer of the opponent and Oown is
a new offer to be proposed by OMACw. v is the time series
comprised of the maximum utilities over intervals. n is the
lead time for prediction procedure and x is the central
tendency of v obtained from DWT. EdðtÞ is the expected
discounted received utility at time t. ures is the estimated
effective reservation utility, and ep is the confident estimate of
the maximum opponent concession with a probability of p. R
is the conservative aspiration level function, u0 the target
utility at time tc . As explained above, d is the discounting
factor and # the default reservation value specified by the
preference profile

1: Require: tmax; d; #; n; p;R
2: while tc <¼ tmax do
3: Oopp ( receiveMessage();
4: Bids = recordBidsðtc;OoppÞ;
5: if NewInterval(tc) then
6: v( preprocessDataðtc;BidsÞ
7: x( decomposeðvÞ;
8: ðEdðtÞ; tlÞ ( predictðx;v; nÞ;
9: ðures; e

p
minÞ ( updateParasðx;v; #;p; tlÞ;

10: R( ðures; epÞ;
11: end if
12: u0 = getTargetUðEdðtÞ;R; d; tcÞ;
13: if isAcceptableðu0;Oopp; d; tcÞ then
14: agree(Oopp);
15: else
16: checkTermination();
17: Oown � constructOffer(u0);
18: proposeNewBid(Oown);
19: end if
20: end while
5.1. Opponent modeling

According to OMACw, the objective of opponent modeling is
twofold: to analyze the opponent’s past bidding strategy with
the goal to reveal the concession trend implied by its behavior
(‘‘trend analysis’’); and to predict the utilities of the opponent’s
forthcoming offers (for the agent) on the basis of the identified
trend (‘‘trend prediction or extrapolation’’). The process of
opponent modeling is captured by lines 3 to 11 in Algorithm 1.
Opponent modeling is technically done through a combination of
discrete wavelet transformation (trend analysis) and regression
with Gaussian processes (trend prediction).

When receiving a new counter-offer Oopp from an opponent at
the time tc , the agent records this time stamp and the utility
UðOoppÞ according to the agent’s own utility function (see line
4). The agent divides a negotiation session into a fixed number
of intervals (denoted as f) of equal duration. The sequence of
the highest utility at each previous interval, together with their
time stamps, is taken as the basis for predicting the opponent’s
behavior (line 6). The motivation for using this prediction basis
is twofold (a similar motivation is given in Williams et al.
(2011)). First, this degrades the computation complexity so that
the agent’s response time is kept low. Assume that all observed
counter-offers were taken as inputs, then the agent might have
to deal with several thousands of data points in every single
negotiation session. This computational load would lead to a clear
negative impact on the quality of negotiation in a real-time set-
ting. Second, this reduces the risk of misinterpreting the oppo-
nent’s behavior that exists in multi-issue negotiations because a
small change in the utility of an opponent may result in a large
utility change for the negotiator. The resulting time series consist-
ing of the maximum utilities at each interval is referred to as v
afterwards.

To analyze the trend, the time series v is first processed by
applying discrete wavelet transformation (DWT); this is captured
by line 7. The output of DWT includes an approximation and a
detail component as described in Section 4.1. OMACw focuses on
the approximation part and intentionally ignores the detail part
for three reasons. First, the approximation part represents the
trend of the opponent concession curve and indicates how the con-
cession of opponent will develop in the future. More importantly, it
becomes more smooth (compared to the original signal, i.e. v) to
allow for accurate and robust prediction. Third, the detail parts cor-
respond to high frequency short-term signal or random noise.
Thus, these detail parts are trivial components of the original sig-
nal, and to calculate their precise predictive distribution would
require a tremendous computational effort.

Regression is then performed with Gaussian processes to
forecast the opponent’s future moves using the results of trend
analysis. A notable advantage of Gaussian processes is that it not
only provides the accurate estimation of the dependent variable(s)
but also gives a measure of the level of confidence in that predic-
tion. Since OMACw adopts a periodical updating mechanism, it is
not necessary and also not advantageous to forecast globally (i.e.,
from the current moment to the end of negotiation), because this
is likely to generate noise that results into imprecise predictions.
OMACw limits the range of forecasting to n intervals to achieve effi-
ciency and noise reduction.

5.2. Adaptive concession-making mechanism

Based on the predictive distribution available through the
learnt opponent model, OMACw decides how to set the own tar-
get utility (see line 12 in Algorithm 1). One possibility is to set
the target utility according to the maximum predicted utility.
This is straightforward but may be ineffective. Suppose the nego-
tiation opponents are ‘‘sophisticated and tough’’ and always
avoid making concessions, the prediction results can then easily
lead to a misleading, too low expectation about the future utility
offered by the other party. This, in turn, can result in an adverse
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concession behavior.4 Moreover, a global prediction approach can
make this situation even worse. To deal with this ‘‘irrational
concession’’ effect, OMACw employs a conservative aspiration level
function RðtÞ that carefully suggests target utilities for the agent.
(This negative effect is also considered in Section 6.2.) The
R-function is based on two variables, ures and ep, where the former
represents our agent’s estimated effective reservation utility and
the latter represents the expectation of the maximum opponent
concession. These two variables are periodically updated in depen-
dence on the output of learnt opponent model (line 9 and 10 of
Algorithm 1). Next, we motivate the usage of these two variables
and define the R-function in detail.

Although the default reservation value of a negotiation (i.e., #) is
known, it is more like a ‘‘default solution’’ in the failure case
(i.e., when no agreement is reached) rather than an indication of
the actual minimum compromise the other party will make. Con-
sider, for instance, an opponent that is cooperative in the sense
that it is willing to concede more than # (perhaps even in an early
negotiation stage); in this case the worst possible outcome for the
agent is not longer given by #. The estimated effective reservation
utility ures is defined as follows:

ures ¼max xlow
maxðtlÞ; #

� �
ð11Þ

where # is the reservation value predefined by its own preference
profile, tl the last time point when the opponent modeling task is
performed, max returns the larger value between arguments.
xlow

maxðtÞ is the maximum value of xlowðtÞ in ½0; t�, which is the lower
bound of x and is defined as

xlowðtÞ ¼ xðtÞ � ðmeanðr½0;t�Þ � stdevðr½0;t�ÞÞ ð12Þ

with x being the main tendency of v; r½0;t� the series representing
the ratio between x over v in the interval ½0; t� and stdev the stan-
dard deviation.

OMACw is sensitive to ures, that means, an inappropriate setting
of ures would result in a negotiation failure (in the case it is too big
and the agent thus tends to make no concession) or in a reduction
of its potential payoff (in the case it is too small and the agent thus
tends to concede more than necessary). Because x depends on the
received counter-offers, using the maximum value from its lower
bound assures with low failure risk an increase of the agent’s
potential profit. When this value is smaller than #, the agent uses
# instead (see Eq. (11)).

Another key factor of R(t) is ep, which aims at keeping track of
the best forthcoming compromise. Toward this end, a probability
parameter p is used that specifies the likelihood of the prediction
(i.e., the higher p, the more confident the prediction). The defini-
tion of ep is based on the error function that is used in the standard
cumulative distribution function (CDF) of a Gaussian distribution.
More precisely, the CDF is given by

Fðx;l;r2Þ ¼ 1
2

1þ erf
x� lffiffiffi

2
p

r

� �� �
ð13Þ

where erf is the error function given by

erfðxÞ ¼ 2ffiffiffiffi
p
p

Z x

0
e�t2

dt ð14Þ

The complement of the above cumulative distribution function
represents the upper tail probability of the Gaussian distribution,
and its inverse function specifies an expected value (x) of a random
4 An opponent model that is too sensitive to opponent behavior tends towards
making higher concession than necessary to reach an agreement with that opponent.
Throughout this paper this is referred to as ‘‘adverse concession behavior’’ and ‘‘
irrational concession’’.
variable X such that X falls into the interval (x, +1) with the given
probability p. This is expressed by

Qðp; l;rÞ ¼ l�
ffiffiffi
2
p

r2erf�1ð2p� 1Þ ð15Þ

In order to capture a high-confident estimate of the forthcom-
ing maximum concession, the Q-function then takes as input a
probability p, the maximum posterior mean estimate ~l, and the
corresponding posterior standard deviation ~r in the resulting pre-
dictive distribution about v. The probability p should be set high
enough so that a strong confidence about the maximal opponent
concession is ensured. Since ures is the worst possible outcome,
the agent takes it as the minimum value for ep. Overall, this is cap-
tured by

ep ¼maxðures;Qðp; ~l; ~rÞÞ ð16Þ

The conservative aspiration level function RðtÞ should decrease
the utility expectation of an agent as time proceeds. Moreover, it
should take into account the opponent behavior and the discount-
ing effect. More precisely, RðtÞ should be proportional to ep and ures

so that the agent is likely to benefit from the concessive behavior of
an opponent. At the same time, RðtÞ should be inversely propor-
tional to d because the benefit of an early agreement becomes
increasingly significant as the discounting factor decreases. These
requirements on RðtÞ can be instantiated in different ways. OMACw

does this as follows:

RðtÞ ¼ ðUmax � uresÞð1� tÞ
b
d

ep

Umax

� �b

þ ures ð17Þ

where b is the concession coefficient controlling the concession
rate, Umax is the possible maximum utility in the scenario and d is
the discounting factor.

In addition, OMACw uses the expected discounted received util-
ity EdðtÞ in its decision making. This utility, which corresponds to
the expectation of how much discounted profit can be received
from an opponent at some future time tH, is defined by:

EdðtHÞ ¼
1
C

Z þ1

�1
Ddðu � f ðu;l

H
;rHÞ; tHÞdu ð18Þ

where C is a constant called normalizing constant, f is the probabil-
ity density function of Gaussian distribution, and l

H
and rH are the

mean and standard deviation (both obtained from GPs) at tH. Unlike
the approach described in Williams et al. (2011), which truncates
the probability distribution to ½0;1�, OMACw preserves the probabil-
ity distribution by introducing the normalizing constant C.

OMACw distinguishes two cases with respect to the expected
discounted received utility. First, the expectation of EdðtÞ is opti-
mistic, that is, the expected received utility is larger than what is
suggested by the conservative aspiration level function. Formally,
this means that there exists an interval {T j T – £; T # ½tc; ts�},
where tc is the current time slot and ts the end point of the predi-
cated time series, so that

EdðtÞ > DdðRðtÞ; tÞ; t 2 T ð19Þ

In this case the time t̂ at which the optimal expected utility û is
reached is set as follows:

t̂ ¼ argmax
t2T

EdðtÞ ð20Þ

Moreover, û is defined as

û ¼ Edð̂tÞ ð21Þ

Second, the expected received utility is below the suggested aspira-
tion level. In this pessimistic case û is defined as 0 and OMACw

abides by the target utility determined by RðtÞ. By distinguishing
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these two cases, OMACw aims at ‘‘getting the most with lowest pos-
sible risk’’.

Obviously, it would be not rational to concede immediately to û
when ul P û, where ul is the utility of the last bid before the oppo-
nent model is updated at time tl. Similarly, it would be not appro-
priate for an agent to immediately switch to û if ul < û. Therefore,
OMACw dynamically adjusts the concession rate by setting the tar-
get utility u0 as follows:

u0 ¼
RðtcÞ if û ¼ 0

ûþ ðul � ûÞ tc�t̂
tl�t̂

otherwise

(
ð22Þ
5.3. Counter-offer response mechanism

After the target utility u0 has been chosen, an agent has to
decide how to respond to the opponent’s current counter-offer
(this corresponds to lines 13–19 in Algorithm 1). OMACw first
checks whether any of the following two conditions is fulfilled:

� the utility of the latest counter-offer UðOoppÞ is not smaller than
u0,
� or, the counter-offer has been proposed by the agent itself to its

opponent at some earlier point during the ongoing negotiation
process.

If any of these two conditions is satisfied, the agent settles the
deal and the negotiation ends (line 14).

Otherwise, OMACw checks whether u0 falls below the best coun-
ter-offer received so far. If this is the case, then, for the reason of
negotiation efficiency, this counter-offer is proposed to the oppo-
nent. Such an action is reasonable because it tends to satisfy the
expectation of the opponent. If not the case, then OMACw con-
structs a new offer following a �-greedy strategy (Chen & Weiss,
2014). According to this strategy, a greedy offer with probability
1-� is chosen in order to exploit the opponent behavior, and with
probability �, a random offer5 is made (where 0 6 � 6 1). The greedy
offer is chosen as follows. For a rational opponent it is reasonable to
assume that the sequence of its counter-offers is in line with its
decreasing satisfaction. Thus, the more frequent and earlier a value
of an issue j appears in counter-offers, the more likely it is that this
value contributes significantly to the opponent’s overall utility. For-
mally, let Fð�Þ be the frequency function defined by:

Fnðv jkÞ ¼ Fn�1ðv jkÞ þ ð1� tÞu � gðv jkÞ ð23Þ

where the superscript of Fð�Þ indicates the number of negotiation
rounds, u is the parameter reflecting the time-discounting effect,
and gð�Þ is a two-valued function whose output is 1 if the specific
issue value (i.e., v jk) appears in the counter-offer and 0 otherwise.
The new offer to be proposed is the one whose issue values have
the maximal sum of frequencies according to the frequency func-
tion and whose utility is not worse than the current target utility.
For efficiency purposes, the updating only considers those issue val-
ues that have been proposed by the opposition, and takes place for
the early stage of a negotiation session. In the case of a random
offer, an offer whose utility is within a narrow range around u0 is
randomly generated and proposed at next round.

An important decision to be made by a negotiating agent is
whether or not an ongoing negotiation should be broken off. This
can make sense especially in negotiations with tough opponents
5 Random offers randomly select issue values, rather than utilities. No matter what
offers the agent chooses, the utilities are determined by the target utility u0 (see Eq.
(22)). Please note that, for the sake of efficacy, if no appropriate offers can be found
after a number of trials, the agent alternatively searches its own bidding history for
the offer that is most close to the target utility.
if the reservation value (#) is non-zero and the time-discounting
effect (d) is severe. In this situation, the agent may obtain a better
payoff by aborting the tough negotiation as early as possible,
namely, a slightly discounted reservation value rather than only
a highly discounted outcome based on a late agreement. OMACw

uses the following probability g to decide on breaking off a
negotiation:

g ¼
0 if ~l P #

ð#� ~lÞð1� dÞ otherwise

	
ð24Þ

where ~l is the maximum mean value of the gained prediction, # is
the reservation value, and d is the time-discounting factor. Accord-
ing to this definition, g is proportional to # but inversely affected by
the maximum concession prediction and d. The rationale behind
this is that a high reservation tends to make a significant negotia-
tion success less likely, while a small discounting factor (implying
high time pressure) reduces the payoff quickly. OMACw handles
breaking-off rather conservative: before really breaking off, the
opponent’s forthcoming counter-offers are analyzed for a certain
period of time (5% of the overall negotiation time in the experi-
ments reported below), and break-off eventually happens if none
of these counter-offers is better (i.e., concedes more) than best
counter-offer received so far.

6. Experimental results and analysis

This section is organized as follows. The setup of the experi-
ments is described in Section 6.1. The results and detailed compar-
isons of OMACw with other strategies are shown in Section 6.2.
Finally, Section 6.3 summarizes the performance of our proposed
approach.

6.1. Experimental setup

6.1.1. Automated Negotiating Agent Competition
The Automated Negotiating Agent Competition (ANAC) is a

yearly international competition, which was jointly initialized by
the Delft University of Technology and Bar-Ilan University to
encourage the development of practical agents that are able to pro-
ficiently negotiate against unknown opponents in uncertain cir-
cumstances. With a large number of state-of-the-art negotiating
agents and negotiation domains, it provides a useful benchmark
for objectively evaluating negotiation strategies. ANAC uses the
Generic Environment for Negotiation with Intelligent multi-pur-
pose Usage Simulation (Genius) (Hindriks, Jonker, Kraus, Lin, &
Tykhonov, 2009) as the official test platform. This framework can
support negotiation sessions where the behavior and preferences
of opponents are unknown and where the negotiation sessions
are subject to discounting effects and real-time constraints. Genius
allows to compare new negotiation strategies against various
state-of-the-art negotiation agents that have been implemented
within this framework.

In a competition, each agent plays against other agents in every
considered domain (see 6.1.2), where the two agents involved in a
negotiation act in turn in conflicting roles (e.g., ‘‘buyer’’ and
‘‘seller’’). Suppose agent a negotiates with b in domain D 2 D,
where D is the whole set of domains. Let the two roles of domain
D be represented by PD

1 and PD
2 , respectively, and UD

a!bða; P
D
1 Þ repre-

sent the score of agent a in a session where a initializes it with
playing as the role of PD

1 . Then, the score of agent a, when playing
the role given by PD

1 , is calculated as

Sða; PD
1 Þ ¼

1
2ðjKj � 1Þ

X
b2fKnag

ðUD
a!bða; P

D
1 Þ þ UD

b!aða; P
D
1 ÞÞ ð25Þ

and the score of a, when playing the other role PD
2 , is given by



Table 2
Overview of benchmark agents.

Agent Affiliation Achievement

Ranking Competition

CUHKAgent Chinese University of Hong
Kong

1st ANAC 2012
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Sða; PD
2 Þ ¼

1
2ðjKj � 1Þ

X
b2fKnag

ðUD
a!bða; P

D
2 Þ þ UD

b!aða; P
D
2 ÞÞ ð26Þ

The final score of agent a is then given by

SðaÞ ¼ Sða; PD
1 Þ þ Sða; PD

2 Þ
2

ð27Þ

AgentLG Bar-Ilan University 2nd ANAC 2012
OMAC Maastricht University 3rd ANAC 2012
HardHeaded Delft University of Technology 1st ANAC 2011
Gahboninho Bar Ilan University 2nd ANAC 2011
IAMhaggler2011 University of Southampton 3rd ANAC 2011
Agent_K Nagoya Institute of Technology 1st ANAC 2010
Nozomi Nagoya Institute of Technology 2nd ANAC 2010
Yushu University of Massachusetts

Amherst
3rd ANAC 2010
6.1.2. Test domains and benchmark agents
We conducted a variety of experiments with domains of

different complexity, where complexity is characterized by two
key factors: competitiveness and domain size. Competitiveness
represents the minimum distance from all of the points in the
outcome space of a domain to the point leading to a complete sat-
isfaction for both sides (note that such an ideal solution may not be
always available). As competitiveness increases, it thus becomes
more and more difficult to reach an agreement that meets both
sides’ interests. The domain size refers to the number of possible
agreements or the scale of the outcome space of a domain. The lar-
ger the domain size is, the more important is the efficiency of an
agent’s negotiation approach because only a possibly very small
fraction of the outcome space can be explored under time
constraints.

The domains we used were all chosen from the available ANAC
domains. We group the domains into four groups: Groups I, II and
III contain domains of low, medium and high competitiveness,
respectively, and Group IV contains domains having a large
outcome space. Specifically, Group I contains the domains IS BT
Acquisition, Music Collection, and Laptop, Phone; Group II contains
the domains Amsterdam party, Barbecue, Flight booking, and Airport
selection; Group III consists of the domains Itex vs Cypress, Barter,
Fifty fifty, NiceOrDie; and Group IV contains the domains ADG,
SuperMarket, Travel, and Energy. All domains used in the experi-
ments are overviewed in Table 1. For descriptions of these domains
the readers are referred to ANAC (2012), Baarslag, Hindriks, Jonker,
Kraus, and Lin (2012) and Fujita et al. (2013).

Furthermore, for assessing the effect of the discounting factor
and the reservation value on the performance of the strategies
(or agents), different values for these two parameters are consid-
ered. More precisely, we conducted experiments with three
discounting factor parameters (i.e., d ¼ f0:5;0:75:1:0g) and three
reservation value parameters (i.e., # ¼ f0;0:25;0:5g), which
resulted in nine (3 � 3) different scenarios for each domain.

As benchmark agents for the experimental evaluation of
OMACw we used the three best-performing agents of each of the
Table 1
Overview of application domains.

Group Domain name Year Issues Domain
size

Competitiveness

I IS BT acquisition 2011 5 384 0.117
I Music Collection 2012 6 4320 0.150
I Laptop 2011 3 27 0.160
I Phone 2012 5 1600 0.188
II Amsterdam party 2011 6 3024 0.223
II Barbecue 2012 5 1440 0.238
II Flight booking 2012 3 36 0.281
II Airport site

selection
2012 3 420 0.285

III Itex vs Cypress 2010 4 180 0.431
III Barter 2012 3 80 0.492
III Fifty fifty 2012 1 11 0.707
III NiceOrDie 2011 1 3 0.840

IV ADG 2011 6 15,625 0.092
IV SuperMarket 2012 6 98,784 0.347
IV Travel 2010 7 188,160 0.230
IV Energy 2012 8 390,625 0.525
2010, 2011 and 2012 ANAC competitions. An overview of these
agents, which together form a highly competitive negotiation set-
ting, is given in Table 2. For details on the benchmark agents, we
refer to ANAC (2012), Baarslag et al. (2012), Chen and Weiss
(2012), Fujita et al. (2013) and Hao et al. (2014).
6.1.3. Basic tournament and OMACw setting
The empirical evaluation is done with GENIUS, which is the offi-

cial platform used for the international ANAC competition. It
allows to compare agents (representing different negotiation strat-
egies) across a variety of application domains under real-time con-
straints. For each scenario of each domain, we run a tournament
consisting of ten agents (including OMACw and other nine compet-
itors) ten times to get results with statistical confidence. In each
tournament each agent repeats negotiation against the same oppo-
nent four times, where they exchange both their negotiation roles
(i.e., buyer and seller role) and the order in which they start with
bidding. No information about the opponents’ strategies or other
private information is available to any of the agents, and none of
them can take advantage of previous encounters with their oppo-
nents (which is assured by the GENIUS platform). The maximum
time for every negotiation session is 180 s since it is the default
setting in GENIUS and ANAC competitions. When there is no agree-
ment reached at the end of a session, then the disagreement solu-
tion applies, which means that each agent receives its own
reservation value.

In our experiments OMACw performed effectively and very
robust for a broad range of parameter settings. Table 3 shows a
concrete parameter setting used in the experiments reported in
this article.
6.2. Experimental results

6.2.1. Evaluating effectiveness of opponent models
In this subsection, we compare the proposed opponent

modeling scheme with other important methods that also aims
at learning the opponent’s strategy by means of predicting future
concession. The opponent modeling component of OMACw is
benchmarked against two main competitors, EMD + ARMA and
Gaussian processes (GPs), which are employed by EMAR (Chen &
Weiss, 2013) and IAMhaggler2011 (Williams et al., 2011), respec-
tively. These models are applied to predict the utilities of future
offers proposed by negotiation partners in all domains given in
Table 1 with two different time-constraint scenarios: negotiations
with a short negotiation deadline (i.e., 60 s), and negotiations with
the standard ANAC deadline (i.e., 180 s). In this way, the perfor-
mance w.r.t. small and large numbers of offer exchanges can be
both assessed. Moreover, the benefit of combining the two mod-
ules (i.e., DWT and GPs) can be verified.



Table 3
Overview of primary parameter settings.

Parameter Description Value Comment

k Decomposition level 4 No significant performance differences for more layers (i.e., values P4)
n Lead time 15 10% of the maximum interval, too large values decrease prediction accuracy
p Probability used for opponent concession

prediction
0.9 The probability should be high enough to ensure a strong confidence about the prediction

results
b Concession coefficient 0.1 The higher the value the more cooperative the agent becomes
� Probability of random offers 0.5 Equal chances for exploration and exploitation
u Time-discounting coefficient 1.5 The higher the value the less important counter-offers later on are taken as

Table 4
The RMS errors averaged over the three opponents on each domain. Bold means the value significantly better than GPs (95% confidence in each case based on Welch’s t test).

Opponent model IS BT Acquisition Music Collection Laptop Phone

Short Regular Short Regular Short Regular Short Regular

GPs 1.15 1.46 4.1 1.7 2.52 2.51 8.11 6.67
GPs + DWT 1.64 0.85 3.38 0.99 2.49 1.45 5.66 3.72
EMD + ARMA 4.12 3.15 5.52 4.0 3.36 3.04 6.40 6.44

Amsterdam party Barbecue Flight booking Airport selection
GPs 4.14 6.74 7.51 6.59 5.94 6.67 3.93 3.72
GPs + DWT 4.21 3.12 6.22 4.07 5.41 3.59 3.37 1.98
EMD + ARMA 5.03 4.67 6.57 6.13 5.58 5.36 4.74 4.61

Itex vs Cypress Barter Fifty fifty Nice or die
GPs 5.05 3.81 3.66 3.03 1.53 1.99 0.01 1.76
GPs + DWT 4.37 2.38 3.10 1.83 1.39 1.52 0.15 1.71
EMD + ARMA 3.77 3.34 3.62 3.08 1.05 1.41 1.63 2.1

ADG SuperMarket Travel Energy
GPs 5.95 5.23 6.05 6.31 7.71 7.25 4.98 4.07
GPs + DWT 3.48 3.17 3.05 1.71 3.97 3.24 4.62 2.95
EMD + ARMA 5.24 4.18 4.24 3.92 4.47 3.83 4.03 3.80
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The results are shown in Table 4, where root mean square errors
(RMSE) under short and standard time-constraints are listed for
each model in each domain. As can be seen from this table, the per-
formance of models tends to increase with negotiation time. More
precisely, there was on average a difference of 14.4% between
them. This indicates that a training of the models with more sam-
ples improves their performance in terms of prediction accuracy.
Furthermore, the results show that the opponent modeling compo-
nent of OMACw is also robust for short-time-period negotiations,
obtaining an average RMSE of 3.53%. Moreover, OMACw outper-
forms others with a much higher accuracy rate in both cases. Spe-
cifically, it managed to achieve lower RMSE: around 80% (in the
case of short time-constraints) and 58% (in the case of regular
time-constraints) of the mean RMSE of others. With respect to reg-
ular negotiation deadlines, GPs + DWT was significantly better
than the other approaches (using Welch’s t test). Overall, these
results show that the new learning scheme – DWT + GPs – outper-
forms GPs as well as EMD + ARMA.
Fig. 3. Scores of agents under different levels of opposition.
6.2.2. Performance in different levels of competitiveness
Based on the domains from Group I to III, Fig. 3 shows the

agents’ performance under low, medium and high competitive-
ness. For each domain the influence of the discounting factor and
the reservation value are taken into consideration by using the
resulting nine possible scenarios (as described above). As can be
expected, all agents managed to increase their profit as competi-
tiveness decreases. OMACw was the winner in all three groups,
where the distance to the other agents grows with the level of
competitiveness. OMAC made the 2nd place in Groups II and III,
and CHUHKAgent made the 2nd place in Group I. The performance
of IAMhaggler2011 dropped dramatically as the competitiveness
gets stronger.
Table 5 summarizes the results for Groups I, II and III. Overall
OMACw was the most successful agent, which was above the aver-
age performance of other negotiators by up to a 19% in the most
competitive Group III. According to our analysis the main reason
for this is the ability of OMACw to estimate with high precision
the future concession an opponent will make. Due to this estimate,
an agent using OMACw concedes less especially in highly compet-
itive domains. In less competitive domains (Groups I and II), where
it is more likely that win–win solutions exist and thus agreements
can be found with less compromise, this ability of OMACw tends to
have a lower impact. As can be also seen from the table, OMACw is
a clear improvement of OMAC, which is the second-best agent.
OMAC achieved scores of about 94% of OMACw.
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Table 6
Scores of agents averaged over all scenarios, grouped by the discounting factor and
ordered by their overall ranking.

Agent Score

d ¼ 0:50 d ¼ 0:75 d ¼ 1:00

OMACw 0.553 0.640 0.795
OMAC 0.506 0.613 0.757
CUHKAgent 0.504 0.615 0.743
AgentLG 0.506 0.601 0.718
Nozomi 0.502 0.598 0.706
HardHeaded 0.489 0.577 0.743
Agent_K 0.473 0.572 0.694
Gahboninho 0.497 0.518 0.724
IAMhaggler2011 0.511 0.560 0.604
Yushu 0.451 0.564 0.643

The value in bold means the highest score in each class.

Table 5
Performance summary of each opposition level, ordered by the agents’ overall ranking
(see Table 8).

Agent Low opposition
(G I)

Medium
opposition (G II)

High opposition
(G III)

OMACw 0.820 0.699 0.462
OMAC 0.759 0.682 0.429
CUHKAgent 0.782 0.671 0.406
AgentLG 0.750 0.649 0.420
Nozomi 0.745 0.650 0.399
HardHeaded 0.745 0.650 0.406
Agent_K 0.732 0.619 0.401
Gahboninho 0.754 0.612 0.364
IAMhaggler2011 0.748 0.599 0.309
Yushu 0.749 0.622 0.353

The value in bold means the highest score in each class.

6 Note that an agent does not know the reservation value of its opponent.
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6.2.3. Performance in the large outcome space domains
Group IV contains the four largest ANAC domains (with sizes

ranging from 15,625 to 390,625) and has an average domain size
of more than 170,000. The results for this group are shown in
Fig. 4. As done for the other groups (see above), the results are
averaged over all scenarios of the included domains in order to
cover a sufficiently broad range of values for the discounting factor
and the reservation value. As can be seen from the table, OMACw

again outperformed all other competitors. OMAC and CUHKAgent
finished second and third, respectively. OMACw achieved a score
of 0.669, which is 13% higher than the mean score of the oppo-
nents. As these results also show, there was an increase in the per-
formance of the best agents of ANAC 2010, ANAC 2011, ANAC 2012.
Specifically, the 2010, 2011 and 2012 agents on average obtained a
score of 83%, 88% and 93% of OMACw. OMAC performed better than
the other ANAC agents, but remained 6% below the score achieved
by OMACw. Overall, the results for Group IV confirm the suitability
of OMACw for very large domains.

6.2.4. Evaluation of the impact of the discounting factor
As the discounting factor decreases, the payoff of the partici-

pants is increasingly affected over time. It is therefore interesting
to investigate the performance of the agents (respectively their
negotiation strategies) for different time-discounting levels. For
that purpose we partition all available scenarios into three classes
(d ¼ f0:5;0:75;1:0g) according to their discounting factor. This
comparison is presented in Table 6. As this table shows, an increase
of d (hence a decrease of the time pressure) results in an increase of
the scores achieved by the agents. A comparison with the non-
discounting case (d ¼ 1) reveals that the agents’ mean score
dropped by 30% to 0.499 for d ¼ 0:5 and by 18% to 0.586 for
d ¼ 0:75. Each of the three agents IAMhaggler2011, CUHKAgent
and OMAC finished second in one of the three classes. OMACw per-
formed best in all three classes, with a performance that was 12.1%
above the average performance of the others for d ¼ 0:5, 10.3% for
d ¼ 0:75, and 13% for d ¼ 1. Interestingly, the smallest difference
between OMACw and its opponents occurred for the medium
time-discounting factor (d ¼ 0:75). Our analysis indicates that this
was the case because most opponents are optimized for a medium
discounting level. Overall, these results show the ability of OMACw

to adapt effectively to different time-discounting levels.

6.2.5. Evaluation of the impact of the reservation value
For the purpose of better understanding the impact of the res-

ervation value, we divide all scenarios according to the used reser-
vation value (# ¼ 0;0:25, and 0.5) into three classes. Table 7 shows
the performance results of the agents achieved for each of these
three classes. A general observation from these results is that these
agents achieved higher scores for higher reservation values (only
one agent, Yushu, performs somewhat worse for # ¼ 0:25). Impor-
tantly, OMACw performed best in all three classes, and OMAC was
the second best agent, obtaining an average score of about 6%
below OMACw. The advantage of OMACw over the others decreased
gradually with increasing reservation values. Specifically, the larg-
est difference (12%) was achieved for # ¼ 0, whereas the difference
dropped to 10.4% and 9.6% for # ¼ 0:25 and # ¼ 0:5, respectively.
The reason behind it is that for higher values of # (especially when
# ¼ 0:5), the negotiations tend to end up with disagreement solu-
tions since in some domains (e.g., Fifty fifty and NiceOrDie) utility
of proposals is hard to meet the expectation of each other. On the
contrary, it is much easier for our agent OMACw to realize an
increased advantage for lower # by exploring opponents as gener-
ated offers are normally better than reservation value6 in this case.

6.3. Performance summary

The overall performance of the agents is summarized in Table 8,
where the normalized mean score and standard deviation are
given. Normalization is done in the standard way, using the maxi-
mum and minimum utility obtained by all agents. In addition, to
calculate the rank of each agent, Welch’s t test was used to check
for statistically significant differences between the agents’ ANAC
scores (also see ANAC, 2012). More precisely, we computed this
for every single pair of agents in order to determine with 95% con-
fidence which agents defeat a specific agent, and which agents are



Table 8
Overall performance of all agents across all tournaments in descending order. The
letter in bold of each strategy is taken as its identifier for the later EGT analysis.

Agent anking Normalized score Standard deviation

OMACw 1 0.667 0.010
OMAC 2–3 0.603 0.007
CUHKAgent 2–3 0.601 0.005
AgentLG 4 0.581 0.009
Nozomi 5–6 0.570 0.009
HardHeaded 5–6 0.566 0.008
Agent_K 7 0.535 0.008
Gahboninho 8 0.526 0.007
IAMhaggler2011 9 0.511 0.005
Yushu 10 0.502 0.006

Table 7
Scores of agents averaged over all scenarios, grouped by the reservation value and
ordered by their overall ranking.

Agent Score

# ¼ 0:00 # ¼ 0:25 # ¼ 0:50

OMACw 0.656 0.657 0.675
OMAC 0.609 0.619 0.647
CUHKAgent 0.604 0.615 0.643
AgentLG 0.585 0.607 0.634
Nozomi 0.583 0.599 0.624
HardHeaded 0.581 0.602 0.626
Agent_K 0.568 0.576 0.595
Gahboninho 0.568 0.575 0.596
IAMhaggler2011 0.553 0.557 0.565
Yushu 0.553 0.547 0.558

The value in bold means the highest score in each class.
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beaten by that agent. (For instance, in this setting an agent that is
beaten by one agent and beats seven agents is considered to have
rank 2–3, that is, with 95% certainty the rank of this agent lies
between 2 and 3.) The best overall performance was achieved by
OMACw, with a noticeable distance of 20% above the average over-
all performance (normalized score) of the other agents. Moreover,
the performance of OMACw was 10% above that of OMAC, which
achieved the second highest score. The difference between OMAC
and CHUKAgent was not significant and therefore both made the
2–3 place. Given these results, OMACw clearly outperformed all
considered state-of-the-art agents in a variety of scenarios. It also
performed much better than its predecessor OMAC, especially in
Fig. 5. Comparing our agent against the winner of each domain. In
domains with a high time-discounting factor and domains with a
low competitiveness.

Interestingly, IAMhaggler2011 (Williams et al., 2011), which
also employs GPs, achieved merely 77% of the scores of OMACw.
We looked into this and found that there are two main reasons caus-
ing this performance gap: IAMhaggler2011 adjusts the concession
rate according to the maximum predicted utility and the corre-
sponding time, and the prediction of an opponent’s future moves
is done in a ‘‘global’’ way, that is, on the basis of the whole preceding
negotiation process. This kind of adaptive behavior makes IAMhag-
gler2011 vulnerable to ‘‘irrational concession’’ induced by pessimis-
tic predictions (see Section 5.2 where it is explained how OMACw

avoids this problem). The phenomenon of irrational concession
becomes increasingly apparent when IAMhaggler2011 bargains in
no-time-pressure scenarios with ‘‘tough’’ opponents. For instance,
when competing against the top three agents listed in Table 8 in
the Amsterdam party domain, IAMhaggler2011 obtained an average
score of only 0.533, which was 55% of the mean score of those three
agents.

Having compared OMACw against the best overall performance
agents (i.e., the ANAC winners), it is also of interest whether
OMACw can outperform the winner of each domain (note that
the winner of ANAC is not necessarily the winner of each domain).
Therefore, in the following experiments OMACw competes in each
domain against the domain winner. The results are given in Fig. 5.
The scoring bar of OMACw in a domain is marked with dots if the
difference between the two agents in that domain is not significant
(again using Welch’s t test with 95% confidence). As can be seen, in
most domains OMACw achieved higher scores than the domain
winner: the performance difference is significant in 10 domains.
It was only beaten in the Itex vs. Cypress domain, but the differ-
ence was not significant.
7. Empirical game theoretical analysis

The experimental analysis we provided above aims at investi-
gating the performance of negotiation strategies from the common
mean-scoring perspective using a tournament setting. Although
this analysis gives valuable insight (and thus is common in the
field), it says only little about the robustness of the strategies
because the basic setting of the tournament (especially the number
of participating players and strategies) is fixed. In particular, this
significant differences are indicated by bars marked with dots.
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measurement failed to shed light on the performance of a strategy
in case agents are allowed to switch their strategy. To address
robustness appropriately, empirical game theory (EGT) analysis
(Baarslag et al., 2013; Jordan, Kiekintveld, & Wellman, 2007;
Williams et al., 2011) is applied to the tournament results. The pur-
pose of this analysis technique is to identify pure Nash equilibria
where none of the agents has an incentive to change its current
strategy or, in case no such equilibrium exists, to find the best reply
cycle (Young, 1993). Such a cycle consists of a set of profiles (e.g.,
the combination of strategies chosen by players) for which a path
of statistically significant single-agent deviations (whose definition
is given next) exists that connect them, with no deviation leading
to a profile outside of the set. These two types are both referred to
as empirical equilibria in this work.
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In EGT analysis a profile consists of a combination of strategies
used by players in the game, where some of them may use the
same strategy. Strictly speaking, it is called the pure profile since
players are only allowed to use a single strategy instead of choos-
ing a strategy probabilistically. The payoff of each strategy in a pro-
file is determined by the tournament results (see Wellman (2006)
for a description of this approach). A profile is represented by a
node in the resulting graph. To study the behavior of agent switch-
ing strategies (or profile transition), we consider the statistically
significant single-agent deviations (as done in Williams et al.
(2011)), where there is an incentive for an agent to unilaterally
change its strategy in order to statistically improve its own profit,
given the strategies of others are known. In the following, three
cases of varying complexity are considered to analyze the robust-
ness of strategies in view of game theory:

Case 1: Single negotiation encounters between two players.
Case 2: Tournament setup composed of seven players where

only the top three strategies in Table 8 are available.
Case 3: Tournament setup with a full combination of players

and strategies.

Regarding Case 1, we apply EGT analysis to the single negotia-
tion case where two players are involved and each of them can
freely choose among the strategies that are considered in the
experiments described above. For brevity, in the following each
strategy is referred to by a single letter, namely the respective bold
letter in Table 8 (e.g., C stands for CUHKAgent). Let S be the com-
plete strategy set, that is, S = {A, N, Y, G, H, I, L, C, O, M}. The score
of a strategy in a specific profile is the payoff achieved when play-
ing against the other strategy and averaged over all scenarios con-
sidered in the above experiments. The analysis results are shown in
Fig. 6. The first row of each node gives the pair of strategies of a
profile; the second row shows the average score achieved by the
strategy pair. This average score is used as a measure of the social
welfare achieved by the two involved strategies, which can be
interpreted as overall benefit achieved by a profile for all involved
agents. The stronger strategy in each profile is marked with a color
background. Each arrow indicates a statistically significant single
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ysis, no pair of strategies is in equilibrium; instead, there exists a
best cycle of statistically significant single-agent deviations. This
best cycle contains four profiles given by NM, NI, IC, CM. For any
other strategy profile not included in this cycle, there exist a path
of statistically significant deviations (i.e., strategy changes) that
lead to a profile within the cycle. The highest social welfare (i.e.,
0.681) is achieved by the profile GI; this profile, however, is not
included in the best cycle. Moreover, despite the fact OMAC is
the second best strategy of the competition, it is not contained in
any of the best-cycle profiles.

To summarize, in single negotiation encounters there are four
strategies – OMACw, CUHKAgent, IAMhaggler2011, Nozomi – that
are robust in the sense that they are in the empirical equilibria into
which all other strategies eventually lead to (i.e., they are the
basins of attraction Baarslag et al. (2013) is 100%) and which are
chosen by the negotiating players with equal probability (because
they are symmetric). This result also indicates that high-scoring
strategies (e.g., OMAC) do not necessarily perform well in single
encounters, or in other words, they are not necessarily stable.
However, it is important to see that the single encounter analysis,
while useful, provides quite limited information when the setup
gets more complicated. Therefore, in the following we look into a
setting involving seven players and the top three strategies.

We now consider a seven-player tournament setting (Case 2)
where the players can freely switch among the top three strategies
(i.e., OMACw, OMAC and CUHKAgent, see Table 8). The strategy
deviations are visualized in Fig. 7, where each node represents a
profile, the first row of each node lists the three strategies, and
the second row shows how many players use each strategy. The
strategy with the highest score is marked with a color background.
In this restricted 3-strategy tournament, there exists only one
equilibrium and this equilibrium contains OMACw and OMAC. It
is clear that for any non-Nash equilibrium strategy profile there
exist a path of statistically significant deviations that leads to this
equilibrium state. OMAC is the winner of the tournament specified
by the equilibrium state, whereas OMACw is more popular voted by
most agents. The two players using OMAC are not interested in
switching to OMACw (although OMAC lags behind OMACw),
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because it offers them a profit which is better than the profit that
could be achieved in an OMACw self-play setting. On the other
hand, there is no incentive for the other players to switch from
OMACw to OMAC because this would result in a decrease of their
benefit. However, if a player knows in advance that opponents
are in favor of OMACw, it probably benefits (i.e., obtains a higher
score) from playing OMAC as well.

Regarding Case 3, we investigate the most complex case – the
tournament setting with all players and strategies involved, thus
with ten players that freely choose from ten strategies. Visualiza-
tion of the complete resulting graph is not possible due to the large
number of distinct nodes. More precisely, the complete graph

includes j p j þ j s j �1
j p j

� �
¼ 19

10

� �
¼ 92;378 distinct nodes,

where j p j is the number of players and j s j is the number of strat-
egies. Therefore, we prune the graph to concentrate on relevant
features in a way similar to Baarslag et al. (2013). In more detail,
we blank all nodes in the graph except those being on a path that
starts either with an initial profile where all players choose the
same strategy or with an initial profile where each agent uses a
different strategy and that ends with a pure Nash equilibrium. Fur-
thermore, for the sake of a compact visualization we omit the
beginning parts of all deviation paths that start with a profile
where all agents choose the same strategy from the following set
of strategies: Agent_K, Nozomi, Yushu, Gahboninho, HardHeaded
and IAMhaggler2011. The resulting graph is shown in Fig. 8. The
first row of each node indicates the involved strategies, and the
second row gives the number of players using each of the strate-
gies. A strategy that is not used by any players is not displayed
in order to keep the graph as compact as possible. Using this EGT
analysis, it can be seen that there is only one equilibrium profile,
namely the one where all players choose OMACw; any other strat-
egy profile eventually converges to this equilibrium state. This also
means that OMACw becomes the dominant strategy in this context.
Overall, EGT analysis shows that OMACw is robust in all three nego-
tiation setups and its robustness increases with the complexity of
the negotiation setup.

8. Discussion

Our analysis provides general insights into the proficiency of
practical bargaining agents. For instance, a cooperative attitude
towards opponents in complex negotiations should be imple-
mented very carefully. In particular, the results show that the will-
ingness to easily adapt to opponent behavior (irrational concession)
can prevent a successful negotiation outcome. Moreover, the
reported results show that the performance of an agent can be very
diverse in different negotiation scenarios – an agent can obtain
rather high scores in low-opposition domains but only low scores
in high-opposition domains, and vice versa. Similar effects can be
caused by the discounting factor. This implies that the evaluation
of an agent’s performance should be based on an as-broad-as-
possible range of negotiation settings in order to make sure that
all relevant abilities and disabilities of the agent are captured. This
is not sufficiently taken into consideration in performance evalua-
tions, which nowadays typically cover only specific, comparatively
narrow negotiation (parameter) settings.

Regarding strategy robustness, OMACw is particularly stable in
different types of negotiation games. A main reason for this lies
in its adaptive and flexible style of concession making – OMACw

always attempts to minimize its concession, but adaptively relaxes
its minimization effort if the opponent behaves in such a way that
disagreement becomes likely. Due to its opponent learning and
decision-making scheme, OMACw achieved high scores against
opponents as well as a good performance in self-play. Moreover,
the experiments demonstrate that OMACw clearly improves over
its predecessor OMAC when playing against others as well as
against itself.

Apart from complex negotiations studied in this paper, exten-
sive work exists that deals with other aspects in the field of
agent-based negotiations. For example, Carbonneau and Vahidov
(2014) develop a model for defining and analyzing time-dependent
concession behavior in general multi-issue bilateral negotiations.
The model can fit the empirical data of a negotiator to its utility
concession curve. Moreover, it also permits testing hypotheses
about a range of negotiation behavior (e.g., slightly collaborative,
neutral, quite competitive) based on the utility concession curve
center. Li, Vo, Kowalczyk, Ossowski, and Kersten (2013) propose
a generic framework for agent-based negotiations in open and
dynamic environments. This framework enables negotiating
agents to capture the social dynamics of the negotiation process
through dynamically updating the resistance force and the conces-
sion force of the negotiation model. Other features of framework
include that the agents are able to capture the dynamic changes
of negotiation environment, e.g., the newly arrived negotiation
partners and the change of their positions; agents can simulta-
neously engage in a few activities like searching for options outside
of the counter-proposals or concurrently negotiating for a similar
deal with more than one negotiation party. For solving the problem
of how to evaluate negotiation in a dynamic and spatial setting,
Chen et al. (2014) introduce evolutionary game theory to the eval-
uation of strategy performance in a spatial negotiation game,
where there is a large population of agents with each being at cer-
tain location on a graph and the interaction range of agents may be
restricted. In addition, in the work of Garcia and Sebastia (2014)
the authors address the problem of recommendation for a group
of users each of who may have different expectations about the
recommendation and may act differently w.r.t other group mem-
bers. To this end, a UserAgent is implemented to model a user’s
behavior. With the purpose of building a group profile that satisfies
the particular requirements of each group member, these User-
Agents on behalf of their users hold a multilateral negotiation,
under a NegotiatorAgent governing the negotiation and acting as
a mediator to facilitate the agreement.
9. Conclusion and future work

In this paper we introduced an advanced approach called
OMACw for effective and efficient automated negotiation in bilat-
eral, multi-issue, time-constraint, reservation-valued scenarios
without prior knowledge. OMACw, which extends OMAC (Chen &
Weiss, 2012) in several important aspects, overcomes severe
limitations of previous approaches to opponent modeling (e.g.,
expensive computation costs for high-dimensional domains and
unrealistic simplifying assumptions about the basic negotiation
setting). The experimental results show a clear performance
advantage of OMACw over available state-of-the-art agents (chosen
from the previous three editions of ANAC competitions) in various
aspects. The experimental analysis took various key aspects of
automated negotiation into account, including the level of domain
competitiveness, the domain size, and discounting factors and
reservation values.

The major strength of the work is the effectiveness of the pro-
posed approach to learning unknown opponents in complex nego-
tiations. This is achieved through the employed decomposition
technique that performs trend analysis of the received utility curve
and the Gaussian processes that permit accurate trend prediction
and also provide a measure of confidence about the prediction.
Another strength is the adaptive concession-making mechanism.
On the basis of learnt opponent model and conservative aspiration
level function, this mechanism suggests the desired utility at each
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step of the negotiation to concede towards opponents in a rational
manner. Last but not the least, the work includes the extensive
simulations that take a variety of performance criteria into
account, using a standard and open competition infrastructure
and state-of-the-art negotiating agents. The major weakness of
the approach is the high computation load of the proposed
approach, which results in its inability to deal with negotiation
scenarios where a large number of proposal exchanges are needed
in a short period.

Research contributions of the work include providing an
agent-based negotiation approach that researchers in the
community could employ to: (1) learn an opponent’s strategy
given no prior information regarding opponent privacy (e.g., strat-
egy/preference) is available; (2) make concession in the course of a
negotiation in an adaptive manner in response to uncertainty of
complex negotiators; (3) propose new offers with high likelihood
of being accepted by the other negotiation party. Also, our work
presents a useful game-theoretic analysis based on the empirical
results to investigate the robustness of the proposed negotiation
approach. A practical contribution is in providing a good bench-
mark for measuring the efficiency of a newly proposed approach
to complex negotiations.

OMACw opens several new research avenues, among which we
consider the following as most promising. First, as preference
learning is another helpful way to improve the efficiency of a nego-
tiation, especially when the opponents are unknown, we plan to
consider integrating some preference learning technique into the
proposed approach for further boosting its performance. Second,
another important negotiation form, which is also common in
practice, is concurrent negotiation. However, this negotiation form
is relatively poorly understood compared to sequential negotiation
as considered in this article. We suggest to explore whether and in
how far principles and mechanisms underlying OMACw can be suc-
cessfully used and adapted to concurrent negotiation scenarios.
Third, human negotiators are more flexible and less predictable
than automated negotiators. Playing against human negotiators
therefore pose particularly high demands on the adaptive and pre-
dictive abilities of an automated negotiator. As OMACw is strong in
these abilities when playing against other computational agents, it
appears to be a promising choice for human–machine negotiations.
It would therefore be interesting to find out how well OMACw

(equipped with an appropriate communication interface) performs
when playing against different types of human negotiators. We
believe that this can lead to valuable insights w.r.t. the design of
automated negotiation strategies as well as the strategic behavior
of human negotiators. In our current work we concentrate on the
usage of preference learning techniques in the proposed approach.
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