
Neural Networks and Evolutionary Computation.

Part I: Hybrid Approaches in Artificial Intelligence

Gerhard Weiß

Abstract— This paper series focusses on the intersection of

neural networks and evolutionary computation. It is ad-

dressed to researchers from artificial intelligence as well as
the neurosciences.

Part I provides a comprehensive and compact overview

of hybrid work done in artificial intelligence, and shows the
state of the art of combining artificial neural networks and

evolutionary algorithms.
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I. Introduction

Artificial neural networks and evolutionary computation
establish two major research and application areas in arti-
ficial intelligence. In analogy to biological neural networks,
artificial neural networks (ANNs) are composed of simple
processing elements that interact using weighted connec-
tions. ANNs are of particular interest because of their
robustness, their parallelism, and their learning abilities;
see e.g. [9, 26, 51] for introducing literature. Evolutionary
computation is typically considered in the context of evo-
lutionary algorithms (EAs). The most common forms of
EAs are Rechenberg’s evolution strategy (e.g., [49, 54]) and
Holland’s genetic algorithm (e.g., [11, 19, 30]). Although
these forms differ with respect to several implementational
details, conceptually they are nearly identical [29]. EAs
establish a very general and powerful search, optimization
and learning method that bases, in analogy to biological
evolution, on the application of evolutionary operators like
mutation, recombination and selection. Like no other com-
putational method, EAs have been applied to a very broad
range of problems [2].

In the recent years the idea of combining ANNs and EAs
has received much attention [1, 32, 50, 58, 59, 69], and now
there is a large body of literature on this subject. This
paper overviews this literature and shows the state of the
art of bringing ANNs and EAs together. The paper is or-
ganized as follows. Section II deals with the approaches to
an evolutionary design of appropriate structures of ANNs.
Section III summarizes the approaches to an evolutionary
training of ANNs. Section IV provides a guide to further
hybrid approaches in artificial intelligence that do not fall
into the “mainstream categories” treated in the two pre-
ceding sections. Section V concludes the paper with some
general remarks on the idea of synthesizing ANNs and EAs.
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II. Evolutionary Network Design

Extensive experimental data reported in the literature
show that there is a strong connection between the struc-
ture (size and connectivity) and the function of ANNs.
This connection is twofold: first, it concerns the perfor-
mance of learning (“How appropriate is a network structure
for learning a desired function?”); and second, it concerns
the comprehensibility of representation (“How transparent
or opaque is the learned function represented in the net-
work structure?”). Unfortunately, apart from some vague
statements (e.g., “networks being to large loose may loose
their generalization ability” or “learning a function requires
a larger network than representing it”), almost nothing is
known about this structure–function connection, and there
is no method for a priori specifying a network structure
which is suitable with regard to learning performance or
representational comprehensibility. Even after a decade of
enormous progress in the field of ANNs, network design
remains a critical point, and this causes a growing interest
in the automated design of appropriate network structures.
As it was pointed out in [40], there are several reasons for
using EAs in automatically designing networks. In particu-
lar, both enumerative, random and gradient-descent search
methods are limited in their application because the search
space of all possible network structures is infinitely large,
undifferentiable, deceptive and multi-modal. The follow-
ing subsections describe approaches to and aspects of an
evolutionary design of ANNs.

A. Design Criteria

There is an increasing number of approaches to an “evo-
lution-based” design of neural network structures. These
approaches can be grouped according to their design crite-
ria into two broad classes. First, approaches whose de-
sign criterion is the learning performance (including as-
pects like speed, accurary, generalization ability); see e.g.
[22, 24, 36, 38, 40, 47, 52, 68]. The general intention under-
lying these approaches is to find network structures which
improve the learning performance of conventional neural
learning procedures (e.g., backpropagation). Examples of
application tasks used in these approaches are the standard
XOR, two–dimensional XOR, TC discrimination, Boolean
multiplexer and digit/face recognition. In almost all cases
the evolved networks showed a significantly improved learn-
ing behavior compared with the initial networks. Interest-
ingly, EAs often lead to appropriate structures which are
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quite different from those (e.g., layered feedforward or sim-
ple recurrent structures) typically used by human design-
ers. On the other side, however, it is still unknown whether
or not specific network structures evolve under different de-
sign criteria; this issue is addressed in [60].

Second, approaches whose design criterion is the repre-

sentational comprehensibility of network structures. For
instance, in [15, 16] the question is addressed how sym-
bolic schemata might be implemented at the subsybmbolic,
neural–like (connectionist) level. Thereby they took the
view that networks learning by constructing opaque repre-
sentations “may yield little to our understanding of human
cognitive information processing” [16, p. 123] and that “in
order to learn large symbolic structures of the type that
people use, specific architectures will be required” [15, p. 8].
The primary intention for applying the EA technique was
to demonstrate that there is a plausible evolutionary path
along which network structures suitable for symbol process-
ing can evolve. The experimental results indicated that the
low–structured networks were less robust as regards muta-
tional changes than the high–structured ones; particularly,
these experiments showed an evolutionary tendency to-
wards complex, hierarchically organized structures. Other
hybrid approaches which can be viewed under the aspect
of representational comprehensibility are described in e.g.
[12, 13, 46].

B. Genotypic Representation of ANNs

The application of EAs requires an encoding of the net-
work structures into specific representations or “genotypes”
upon which the evolutionary operators mutation and re-
combination can act. The choice of the genotypic repre-
sentation and the evolutionary operators is decisive to the
efficiency of EAs. In particular, this choice affects the fol-
lowing central aspects:

• structural completeness (“Which structures of which
size and connectivity are available?”),

• structural correctness (“Do all mutated and recom-
bined genotypes specify correct structures?”),

• structural level of operator application (“At which net-
work level – individual connections or whole sub-net-
works – do mutation and recombination operate?”),
and

• structural sensibility to operator application (“To what
degree do mutation and recombination influence the
network structures?”).

(Note that mutation and recombination are syntactic oper-
ators that they are applied to the genotypes without regard
to the function or semantics of the phenotypes.)

Two different types of representational schemes have been
proposted in the literature. First, the low–level scheme ac-
cording to which the structure is specified more or less
directly by the network connectivity (e.g., [40, 52]). And
second, the high–level scheme according to which the struc-
ture is specified in a relatively abstract way either by net-
work parameters (like the number of layers or units, the
degree and the types of connectivity between and within

the layers, the size of the units’ receptive fields, and so
forth, e.g. [15, 16, 24, 36, 38]) or by network growth rules
(e.g. [20, 33, 41, 42, 43, 44, 48, 57]). The figures 1 and 2 give
two examples of these representational schemes. A major
characteristic of these representational schemes is that the
low–level one is well suited for the precise and determinis-
tic handling of the connectivity patterns of small networks,
whereas the high–level one is well suited for the handling of
the structural regularities of large networks. The low– and
high–level schemes establish repesentational extremes be-
tween which many “mixed” genotypic representations are
possible.

In view of genotypic representation of ANNs it is in-
teresting to ask how and to what extend real brains are
genetically encoded. Unfortunately, only little is known
about this encoding. However, it is commonly agreed that
the degree of brain determinism decreases from evolution-
ary lower to higher animals. Whereas this determinism is
almost absolute in invertebrates, it allows great variability
in vertebrates. Especially in mammals the brain develop-
ment depends on both genetic and epigenetic factors, and
requires the individual’s interaction with its environment.
See e.g. [18] for further details.

C. Hybrid Learning

All the approaches to a structural evolution of ANNs
mentioned above implement the following hybrid learning

cycle:

1. Creation of the next population of ANNs by means of
mutation, recombination. and fitness–oriented selec-
tion. (The initial population is created at random.)

2. Training of the ANNs by conventional neural learning
algorithms.

3. Evaluation of the fitness values of the ANNs with re-
spect to some given design criteria.

4. If the desired result is obtained, then stop; otherwise
goto step 1.

(In this cycle the genotypes and the phenotypes are not
explicitly distinguished.) Of course, despite this uniform
learning cycle, the approaches show great differences in
detail. This concerns, in particular, the parent–offspring
replacement strategy, the evolutionary operators and the
neural learning procedures.

The price that has to be paid for using EAs for the struc-
tural network design is that of high computational costs. In
order to cope with these costs (at least partially), one can
employ the “natural parallelism” being inherent in these
algorithms.

III. Evolutionary Network Training

Another way of synthesizing the fields of ANNs and EAs
is to use EAs instead of standard neural learning algorithms
for training ANNs; see e.g. [8, 12, 14, 25, 28, 37, 45, 47, 53,
62, 65, 66, 67]. The major idea underlying this synthesis is
to interpret the weight matrices of the ANNs as genotypes,
to change the weights by means of specific mutation and
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FIGURE 1: Example of a low–level network representation according to [40]. The figure shows the genotypic representa-
tion (left) of the connectivity matrix (middle) of a simple neural net (right). The matrix entry (i,j) specifies the type of
constraint on the connection from unit j to unit i; thus, row i of the matrix represents the constraints on the connections
to unit i, and column j represents the constraints on the connections from unit j. Entry “0” means “weight fixed at
zero”, and entry “L” means “learnable”.
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FIGURE 2: Example of a high–level network representation according to [24]. A network “blueprint” is genotypically
represented by a bit string that consists of several segments. Each segment specifies (i) the structure (e.g., the number of
units and their spatial arrangement) of some area of the network by means of area parameters and (ii) the connections
(e.g., their density and projection field) from this area to other areas by means of projection parameters.

recombination operators, and to use the error produced by
the ANNs as the fitness measure which guides selection.
This leads to the following evolutionary training cycle:

1. Creation of the next population of ANNs by means
of mutation, recombination and fitness–oriented selec-
tion of the the weight matrices. (The initial population
is randomly created.)

2. Evaluation of the fitness values of the ANNs.
3. If the desired result is obtained, then stop; otherwise

goto step 1.

Similar to the evolutionary–design approaches, the evolu-
tionary–training approaches show great differences in de-
tail; this concerns, in particular, the genotypic representa-
tion of the weight matrices (e.g., binary–string [66] versus
real–number encoding [45]).

Perhaps the most striking argument for evolutionary–
training approaches is that they, in contrast to the stan-
dard gradient–descent neural learning algorithms, inher-
ently tend to avoid to get stuck in local minima of the
error surface over the weight space. Evolutionary train-
ing was successfully applied to tasks like the XOR/424-
encoder/adder problems, the construction of networks that
approximate functions, categorization, robot–arm position-
ing, and pole balancing. However, despite these successes

it is still unclear how evolutionary and standard neural
training compare with each other; see e.g. [45, 3, 34] for
some controversy statements and results. Although these
results indicate a superiority of neural learning algorithms
in general, in particular cases the outcome of this compar-
ison seems to depend on the error surface and the task to
be learnt by the ANN. More investigations are necessary
to clarify this point.

IV. Other Hybrid Approaches

This section briefly overviews other hybrid approaches
which have been done at the intersection of ANNs and EAs,
but do not fall into the categories “evolutionary design”
and “evolutionary training”.

In [64] an EA was used for pruning unnecessary con-
nections of ANNs after they have been trained by a stan-
dard neural learning algorithm. The idea was to evolve
networks that are smaller than the initial ones, but still
realize the desired tasks. In [5, 31] it is described how
critical parameters of standard neural learning algorithms
(e.g., learning rate and momentum in the case of backprop-
agation) can be optimized by means of EAs. In [5, 33] it
is shown how the global sampling property of EAs can be
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combined with the local search performed by conventional
neural learning algorithms. The idea underlying this in-
teresting synthesis is to use EAs for searching the initial
weight space of ANNs, and the to proceed with conven-
tional neural gradient–descent learning methods. In [21]
the evolutionary concepts of mutation and selection have
been employed as tools for escaping from local error min-
ima of backpropagation–trained networks, and in [35] these
concepts have been used to enable unsupervised learning
networks to change their structure adaptively. A survey
of formal models for describing the dynamics of genotype–
phenotype evolution is provided in [46]. Other interest-
ing works are described in [6, 7, 10, 17, 23]; here it is in-
vestigated how simple neural learning rules on their own,
instead of weight matrices or network structures, can be
evolved with the help of EAs.

Finally, there are two other important questions con-
cerning the relation between learning and evolution that
have been addressed by several researchers in the context
of ANNs. First, the question under which conditions and
how quickly learning can evolve; see [39, 55, 56]. Here a
computational model was described which puts light on
the trade–off between the necessity to evolve learning and
the ability to learn during lifetime. And second, the ques-
tion how learning can guide evolution; see e.g. [4, 27, 47].
Here the underlying argumentation (known as the Weis-
mann Doctrine in evolutionary theory and biology) is that
the ability to learn influences the adaptability and, with
that, the number of descendants of an individual; and this,
in turn, leads to a modified evolutionary search space.

V. Concluding Remarks

The intersection of ANNs and EAs establishes a very
challenging research field for two opposite reasons. On the
one side, this research field offers the opportunity to ob-
tain results and insights which are useful and profitable for
both the area of ANNs and the area of EAs. For instance,
from the point of view of the ANNs, a better understand-
ing can be gained with respect to the structure–function
connection of networks and the optimal parameter tuning
of standard neural learning procedures; and from the point
of view of the EAs, a better understanding can be gained
with respect to the representation of genotypes and the
choice of evolutionary operators. The hybrid approaches
developed so far and overviewed in this paper do the first
steps in these directions.

On the other side, this research field is a very difficult
one, simply because it brings together unsolved problems
from two complex areas. For that reason, and in order to
obtain results which are really expressive and useful, “hy-
brid work” has to be done extremely carefully. This was
not always the case in the past; for instance, some experi-
mental results obtained so far and reported in the literature
are too specific or simply too vague to lead to new insights.
There are many open questions existing and arising in this
field, and a lot of experimental and theoretical efforts are
required in order to answer them. These efforts might be

greatly supported and inspired by taking related work from
other disciplines like genetics or the neurosciences into con-
sideration (see e.g. [59, 61]).

To summarize this conclusion: work at the intersection
of ANNs and EAs is really worth to be done, and is worth
to be done carefully.
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