
A Multiagent Perspective of

Parallel and Distributed Machine Learning

Gerhard Weiß

Institut für Informatik, Technische Universität München

D-80290 München, Germany

weissg@informatik.tu-muenchen.de

Abstract

Parallel and distributed information processing systems play
an increasingly important role in artificial intelligence and
computer science. In this article an approach to learning in
such systems is described that follows the multiagent learn-
ing perspective known from the field of distributed artificial
intelligence. As an evaluation task the job assignment prob-
lem is chosen. This is an NP problem which is relevant to
many industrial application domains. Experimental results
are presented that illustrate the benefits of the proposed
approach.

1 Introduction

The past years have witnessed a steadily growing interest
in parallel and distributed information processing systems
in artificial intelligence and computer science. This inter-
est has led to new research and application activities in ar-
eas like parallel and distributed algorithms, concurrent pro-
gramming, distributed database systems, and parallel and
distributed hardware architectures. Three basic, interre-
lated reasons for this interest can be identified. First, the
willingness and tendency in artificial intelligence and com-
puter science to attack increasingly difficult problems and
application domains which often require, for instance, to
process very large amounts of data or data arising at differ-
ent geographcial locations, and which are therefore often to
difficult to be handled by more traditional, sequential and
centralized systems. Second, the fact that these systems
have the capacity to offer several useful properties like ro-
bustness, fault tolerance, scalability, and speed-up. Third,
the fact that today the computer and network technology
required for building such systems is available. A difficulty
with parallel and distributed information processing systems
is that they typically are rather complex and hard to spec-
ify in their dynamics and behavior. It is therefore broadly
agreed that these systems should be able, at least to some
extent, to self-improve their future performance, that is, to
learn. Not surprisingly, today the topic of learning in paral-
lel and distributed information processing systems receives

increasing attention. The major property of this kind of
learning is that the learning process itself is logically or geo-
graphically distributed over several components of the over-
all system and that these components conduct their learning
activities in parallel. The field of parallel and distributed
machine learning is of considerable importance, but also is
rather young and still searching for its defining boundaries
and shape. The work described in this article may be con-
sidered as an attempt to contribute to this search. Whereas
most of the available work on this kind of learning is centered
araound large-scale inductive learning (e.g., [1, 2, 4, 6]), this
articles presents a parallel and distributed learning approach
that follows the multiagent learning paradigm known from
the field of distributed artificial intelligence (see e.g. [5, 7, 8]
for collections of papers describing work on multiagent learn-
ing).

A problem being well suited for studying parallel and dis-
tributed learning is the job assignment problem (JAP). The
basic variant of the JAP studied here requires to assign jobs
to executing nodes such that the overall completion time is
reduced, where there may be dependencies among the indi-
vidual jobs and differencies in the execution abilities of the
individual nodes. Obviously, the JAP inherently allows for
parallelism and distributedness, simply because the jobs to
be executed can be distributed over several nodes and be-
cause the nodes can execute different jobs in parallel. In
addition to that, there are two further reasons why the JAP
is an interesting and challenging subject of research not only
from the point of view of machine learning. One reason is
the complexity of this problem. The JAP is non-trivial and
known to be a member of the class of NP-hard problems [3],
and therefore in many cases it is even very difficult “to find a
reasonable solution in a reasonable time”. The other reason
is that this problem is omnipresent in and highly relevant
to many industrial application domains like product man-
ufacturing and workflow organization. This is because the
JAP constitutes the core of most scheduling tasks, and the
effectiveness and efficiency of whole companies and organi-
zations is therefore often considerably affected by the way
in which they solve this problem in its concrete appearance.

The parallel and distributed learning approach to the
JAP as it is introduced in this article follows the multia-
gent learning paradigm known from the field of distributed
artificial intelligence. According to the multiagent learning
approach described in this article, the nodes are considered
as active entities or “agents” that in some sense can be said
to be autonomous and intelligent, and the jobs are consid-
ered as passive entities or “resources” that in some way are
used or handled by the agents. The individual agents are



Table 1:

timejob <
N1 N2 N3

1 – 20 40 60
2 – 20 40 60
3 – 20 40 60
4 – 60 20 40
5 – 60 20 40
6 – 60 20 40
7 – 40 60 20
8 – 40 60 20
9 – 40 60 20

Table 2:

timejob <
N1 N2 N3

1 2 40 80 100
2 8, 9 30 110 120
3 9 60 20 70
4 9 100 30 100
5 6 10 10 50
6 9 20 20 20
7 9, 10 70 50 20
8 – 40 20 80
9 – 30 90 80

10 – 60 50 20

restricted in their abilities and, hence, have to interact some-
how in order to improve their use and handling of the re-
sources with respect to some predefined criteria. Learning
in such a scenario can be interpreted as a search through the
space of possible interaction schemes. Starting out from the
concept of the estimates of the jobs’ influence on the overall
time required for completing all jobs, the described approach
aims at appropriately adjusting these estimates by a paral-
lel and distributed reinforcement learning scheme that only
requires low-level communication and coordination among
the individual nodes. This low-level characteristic makes
this approach different from most other available multiagent
learning approaches.

The article is structured as follows. The job assignment
problem and three concrete instantiations of it are described
in section 2. The learning approach is presented in detail
in section 3. Experimental learning results for the three
instantiations of the JAP are shown in section 4. A brief
summary and an outlook on future work is offered in section
5.

2 The Job-Assignment Problem (JAP)

The JAP as it is considered within the frame of the work
described here can be formally described as follows. Let
J = {J1, . . . , Jn} be a set of jobs and N = {N1, ..., Nm} be
a set of nodes, where each job can be executed by at least
one of the nodes (n, m ∈ N ). The individual jobs may be
ordered by a dependency relation, <, where Jk < Jl means
that Jk has to be completed before the execution of Jl can
be started. Jk is called a predecessor of Jl, and Jl is called
a successor of Jk. The nodes may differ from each other
in as far as the time required for completing a job may be

different for different nodes. The problem to be solved is to
find an assignment of the jobs to the nodes such that the
overall time required for completing all jobs contained in J
is minimal. Because this problem is NP-hard, usually it is
reformulated such that it is just required to find an almost
optimal solution in polynomial time. The learning approach
described in this article follows this reformulation, and aims
at producing satisfying (and not necessarily optimal) solu-
tions in reasonable time.

The tables 1 and 2 show two instantiations of the JAP,
subsequently referred to as I1 and I2, respectively. The in-
stantiation I1 is composed of 9 jobs and 3 nodes. There are
no dependencies among the jobs. Each job can be executed
by each node, but there are differences in the time required
by the nodes for executing the jobs. For instance, the nodes
N1, N2, and N3 need 20, 40, and 60 units of time, respec-
tively, for completing job J1. As this table also shows, a
node may require different time intervals for completing dif-
ferent jobs. For instance, the node N1 needs 20, 60, and 40
units of time for completing the jobs J1, J4, and J7, respec-
tively. The instantiation I2 is composed of 10 jobs and 3
nodes. In contrast to I1, I2 requires to take dependencies
among the jobs into consideration. For instance, job J1 has
to be completed before job J2 can be started, and the exe-
cution of job J9 requires the completion of the jobs J2, J3,
J4, J6, and J7.

3 The Learning Approach

The basic idea underlying the multiagent learning approach
described here is that each job is associated with an estimate
of the job’s influence on the overall completion time, and
that these estimates are improved in the course of learning.
As it is described in more detail below, this improvement
as well as the execution of the jobs is done by the involved
nodes in a parallel and distributed way. A high estimate
indicates a significant impact on the overall completion time,
and a job being associated with a high estimate therefore is
identified as “critical” and should be completed as soon as
possible. Learning proceeds in episodes, where an episode
consists of the time intervall required for completing all jobs.
The basic working steps realized during an episode can be
conceptually described as follows:

until all jobs are completed do

(1) The idle nodes choose among the executable jobs,
and this choice is done dependent on the nodes’
execution times and the job estimates.

(2) The nodes execute their chosen jobs.

(3) If a node completes a job, then it adjusts the es-
timate of this job.

When an episode t is finished, the next episode t + 1 starts
and learning continues on the basis of the adjusted job es-
timates that are available at the end of episode t. This is
iterated for a predefined, maximum number of episodes. The
best solution found during these episodes is offered as the
solution of the overall learning process. (A solution found
in an episode need not necessarily be as good as the solu-
tion found in the preceding episode. Due to its statistical
nature this approach does not guarantee a monotonic im-
provement of the solutions found in the course of learning.)
The approach is parallel and distributed in as far as both
job execution (2) and estimate adjustment (3) is done by
different agents. A synchronization of the agents’ activities



occurs in step (1). This also shows the potential advantages
of this kind of learning over centralized learning approaches:
it is more robust (e.g., failure of an individual node does not
damage the overall learning process); it is more flexible (e.g.,
new nodes can be easily integrated in an ongoing learning
process); and it is faster (because of inherent task and result
sharing).

Many concrete forms of this conceptual description are
possible. It was not the goal of the described work to exhaus-
tively investigate all these forms. Instead, the work aimed
at an improved understanding of the potential benefits and
limitations of parallel and distributed machine learning in
general, and therefore a concretization has been chosen that
realizes this type of learning in an intuitive and relatively
simple way and at the same time enables a conclusive and
efficient experimental investigation. In the actual imple-
mentation, step (1) realizes a rank-based assignment of the
executable jobs. This means that the job being associated
with the highest estimate is assigned first, the job having
the second highest estimate is assigned next, and so forth.
Moreover, if the assignment of a job is ambitious in the sense
that there are several idle nodes capable of executing this
job, then the node offering the shortest (job-specific) execu-
tion time is selected with highest probability. Formally, if
N [Jk ] denotes the set of all idle nodes capable of executing a
job Jk (at some time during an episode) and T [i, k] denotes
the time required by Ni ∈ N [Jk] for completing Jk, then the
probability that Ni executes Jk can be described by

T [i, k]
∑

Nj∈N[Jk]
T [j, k]

. (1)

The actual implementation of step (3) offers two slightly
different schemes, subsequently referred to as A1 and A2,
for the adjustment of the job estimates. In the following, let
Et

k denote the estimate of job Jk at the beginning of episode
t, let Ct

k denote the completion time of Jk in episode t, and

let Ct

k
= 1

t

∑

t

τ=1
Cτ

k denote the average completion time
of Jk in the episodes 1 to t. According to the adjustment
scheme A1, the estimates are updated immediately after job
completion. Whenever a node finished a job Jk during an
episode t, it modifies Et

k according to

E
t+1
k

= E
t

k + α(Ct

k − Ct

k
) , (2)

where α is a factor called learning rate. The resulting esti-
mate Et+1

k
is used for ranking in step (1) of episode t + 1.

The later (earlier) a job is completed, the higher (lower) is
its estimate at the beginning of the next episode and, hence,
the higher (lower) is the probability of an earlier execution
of this job. According to the adjustment scheme A2, the
job estimates are updated at the end of each epiode. In con-
trast to A1, this scheme explicitly takes into consideration
that there may be dependencies among the jobs. Consider
the situation at the end of episode t. Let Pred(Jl) denote
the set of all predecessors of Jl, let Succ(Jl) denote the set
of all successors of Jl, and let Ct denote the overall com-
pletion time in the episode t. For each Jk ∈ Pred(Jl), the
node which executed Jl pays a certain amount P t

lk to the
node which executed Jk during this episode. This amount
is given by

P
t

lk =

{

(Ct

l − Ct−1
l

)(Ct − Ct−1) + P t

l if Succ(Jl) 6= ∅
(Ct

l − Ct−1
l

)(Ct − Ct−1) otherwise
,

(3)

where P t

l is the sum of all payments that the node which
executed Jl received from the nodes which executed the suc-
cessors of Jl at the end of the episode t, this is,

P
t

l =
∑

Ji∈Succ(Jl)

P
t

il . (4)

After the node which executed a job Jk received all pay-
ments for this job from the nodes which executed this job’s
successors, it adjusts the estimate of Jk according to

E
t+1
k

= E
t

k + α(Ct

k − C
t−1
k

)(Ct − C
t−1) + βP

t

k , (5)

where α and β are factors called learning rates. The mecha-
nism underlying this update scheme is illustrated in table 3.
For instance, as this table shows, if a job Jk is finished later
in episode t than in episode t − 1 (i.e., Ct

k − Ct−1
k

> 0) and

the overall completion time increased (i.e., Ct − Ct−1 > 0),
then the estimate of Jk tends to increase (because the prod-
uct (Ct

k −Ct−1
k

)(Ct −Ct−1) is positive, as expressed by the
+). As a result, in this case it is likely that the job Jk will
be executed earlier and, provided that there is a causal rela-
tionship between the completion time of Jk and the overall
completion time, that an improved assignment will be gen-
erated in the next episode t+1. The effect of the payments is

Table 3: Ct − Ct−1

influence on Et

k > 0 < 0

> 0 + −Ct

k − Ct−1
k < 0 − +

that potential causal relationships between the completion
time of the jobs and the overall completion time are propa-
gated backwards through the job dependency network. All
together, this adjustment scheme takes particularly care of
“critical” dependency paths, that is, paths resulting in a late
overall completion.

Learning according to this approach occurs in a parallel
and distributed way. In particular, the estimates of differ-
ent jobs may be adjusted concurrently, and all processors
involved in job execution are also involved in the adjust-
ment of the estimates. There are two major characteristics
of this approach. First, it realizes a basic form of reinforce-
ment learning. The only available learning feedback is the
completion time of the individual jobs. This also means that
there is no explict information available about how to gain
an improved job assigment. Second, learning is just based
on a low-level communication and coordination among the
individual nodes. This also means that there is no time- or
cost-consuming need for exchanging complex information or
conducting complex negotiations in order to realize learning.

4 Experimental Results

The figures 1 and 2 show for the JAP instantiations I1 and
I2, respectively, the best solutions learnt after 20 episodes
by the adjustment schemes A1 and A2. In all experiments
described here the learning rates α and β were set to one,
and the parameters E0

i , C0
i , and C0 where all initialized

with zero. As figure 1 shows, the shortest overall comple-
tion times for I1 generated by both A1 and A2 were 80; and
as figure 2 shows, the shortest overall completion times for
I2 generated by A1 and A2 were 140 and 110, respectively.
These results indicate that the schemes A1 and A2 tend to



Figure 1:

N3

N3

N2

N1

30 60 90 120 150 180time 0

N2

N1

instantiation I1 - scheme A1

instantiation I1 - scheme A2

no
de

s
no

de
s

1

2

3

4

5 6

7

8

9

12

3 4

5

6

7

8 9

Figure 2:

N3

N3

N2

N1

30 60 90 120 150 180time

1

3 8 6

510

5 1

4

10

4

2

7

9

8

6

3

7

0

2

N2

N1

9

no
de

s
no

de
s

instantiation I2 - scheme A2

instantiation I2 - scheme A1

perform equally well if there are just a few or even no de-
pendencies among the jobs, but that in general it is worth
to explicitly take dependencies among the jobs into consid-
eration. This observation has been also made in a number
of other experiments not described here for reasons of lim-
ited space. In order to be able to evaluate these learning
results, 20 random solutions for each of the three instan-
tiations have been generated. The best random solutions
found for I1 and I2 had overall completion times of 120
and 230, respectively. (The algorithm used for generating
the random solutions were optimized in the sense that the
avoided potential deadlocks due to the job dependencies.)
Obviously, both adjustment schemes clearly outperformed
random search. Another measure of evaluation is given by
the optimal overall completion times, which are 60 for I1
and 100 for I2. It should be noted that the three instantia-

tions under consideration were designed as test cases whose
optimal solution are known – as mentioned above, the JAP
is too complex to be optimally solved in general. As it is also
shown by other experiments, the two schemes often closely
approach the optima in a relatively short time. For reasons
of completeness it is mentioned that that the optimal so-
lutions for I1 and I2 were found after 48 and 62 episodes,
respectively. It has to be stated, however, that the schemes
A1 and A2 are not proven to always converge to the optimal
solution, and therefore still leave room for improvement.

5 Conclusion

The work described in this article applies parallel and dis-
tributed machine learning to a basic variant of the job-
assignment problem. The learning approach is based on
the multiagent learning paradigm known from distributed
artificial intelligence, and ascribes the jobs the passive role
of resources and the nodes the active role of agents. The
concept of the estimates of the jobs’ influence on the over-
all completion time is introduced, and the job estimates are
adjusted in a reinforcement learning style and without re-
quiring intensive communication and coordination among
the individual nodes. Three instantiations of the JAP are
described and used for an experimental analyis. The avail-
able experiments show that very good learning results can
be achieved in relatively short time intervals. Based on the
experience and insights gained so far, the following two lines
of continuing work are recommended:

• Further experiments with more complex JAP settings
(e.g., larger number of nodes and/or jobs, variants of
the JAP with varying numbers of nodes and/or jobs,
and variants of the JAP with more sophisticated de-
pendencies among the jobs and/or nodes).

• Experimental comparison to other methods for solving
the JAP.

• Bottom-up extension of the learning approach towards
distributed planning and lookahead mechanisms and
explicit negotiation among the nodes.

These two lines should not be considered separately, but in
close interaction. The results available so far indicate that
it is worth to pursue these lines.

Parallel and distributed machine learning establishes a
relatively young area of research and application, and there
are many open issues that still have to be addressed in fu-
ture work. Three of these issues considered as particularly
essential are the following:

• applicability and limitations of traditional machine learn-
ing approaches in the context of parallel and distributed
information processing systems;

• unique requirements for and principles of parallel and
distributed machine learning;

• formal models of parallel and distributed machine learn-
ing.

The need for addressing these and related issues increases
as parallelism and distributedness play an increasingly im-
portant role for computer-based information processing.



References

[1] Chan, P.K., & Stolfo, S.J. (1995). A comparative eval-
uation of voting and meta-learning of partitioned data.
In Proceedings of the Twelfth International Conference
on Machine Learning (pp. 90–98).

[2] Davies, W., & Edwards, P. (1997). The communication
of inductive inferences. In [7].

[3] Garey, M.JR., & Johnson, D. (1979). Computers and
intractability . New York: Freeman.

[4] Provost, F.J., & Hennessy, D.N. (1995). Distributed
machine learning: Scaling up with coarse grained paral-
lelism. In Proceedings of the Second International Con-
ference on Intelligent Systems for Molecular Biology
(pp. 340–348).

[5] Sen, S. (Ed.) (1996). Adaptation, coevolution and learn-
ing in multiagent systems. Papers from the 1996 AAAI
Symposium. Technical Report SS-96-01. AAAI Press.

[6] Sikora, R., & Shaw, M.J. (1991). A distributed problem-
solving approach to inductive learning . Faculty Work-
ing Paper 91-0109. Department of Business Adminis-
tration, University of Illinois at Urbana-Champaign.

[7] Weiß, G. (Ed.) (1997). Distributed artificial intelligence
meets machine learning . Lecture Notes in Artificial In-
telligence, Vol. 1221. Springer-Verlag.

[8] Weiß, G., & Sen, S. (Eds.) (1996). Adaption and learn-
ing in multi-agent systems. Lecture Notes in Artificial
Intelligence, Vol. 1042. Springer-Verlag.


