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Abstract

Multi-machine scheduling, that is, the assigment of jobs
to machines such that certain performance demands like
cost and time effectiveness are fulfilled, is a ubiquitous and
complex activity in everyday life. This paper presents an ap-
proach to multi-machine scheduling that follows the multi-
agent learning paradigm known from the field of Distributed
Artificial Intelligence. According to this approach the ma-
chines collectively and as a whole learn and iteratively refine
appropriate schedules. The major characteristic of this ap-
proach is that learning is distributed over several machines,
and that the individual machines carry out their learning
activities in a parallel and asynchronous way.

1. Introduction

Multi-machine scheduling (MMS) can be briefly char-
acterized as the activity of assigning a number of jobs to
a number of performing machines such that certain perfor-
mance demands like time or cost effectiveness are fulfilled.
This activity, which is best viewed as an optimization or
constraint satisfaction task, is ubiquitous in everyday life.
As the above characterization indicates, scheduling plays
a particularly important and critical role in industrial con-
texts. Apart from this industrial perspective, however, this
characterization allows many other interpretations: jobs and
machines can stand for programmes and computers, classes
and teachers, military missions and soldiers, ships and dock-
yards, or patients and hospital equipment. Each of these
interpretations shows another context in which the need for
scheduling arises, and within each of these and similar con-
texts numerous concrete scheduling scenarios are possible.
Scheduling is a highly complex activity which is known to be
NP-hard even for many static settings in which e.g. the num-
ber of jobs or machines is fixed and known a priori [5]. This
means that in general even static scheduling seems to be
computationally intractable for greater problem instances.

Moreover, assuming a static setting often is an idealization
because typical real-world scheduling environments are of
considerable dynamic nature. For instance, machines may
break down, new jobs may arrive and others may be can-
celled, material may not arrive in time, market conditions
may change, and so forth. Given the ubiquity and com-
plexity of scheduling, it is not surprising that there is a large
number of related literature. Examples of standard books on
scheduling theory are [1, 11, 12]. The more recent literature
indicates an increasing interest in scheduling in parallel and
distributed systems; for instance, see [2, 3, 14]. Moreover,
the challenge of finding appropriate schedules has also at-
tracted many researchers in Artificial Intelligence (AI); for
instance, see [10, 19]. Scheduling in general is also an im-
portant application field in Distributed AI; for instance, see
[4, 8, 7, 15].

This paper offers a learning approach to MMS which
follows the multi-agent learning paradigm known from the
field of Distributed AI (see, e.g., [6, 13, 17, 18]). According
to this paradigm learning is shared among several agents
and none of them is required to be able to solve the learn-
ing task alone. The approach is formulated such that its
intended applicability in industrial contexts is obvious. It
can be easily seen, however, that its conceptual framework
is general enough to be of use in other application contexts
as well. The general idea underlying this approach is to
consider the machines as active entities or “agents” that are
capable of collectively learning appropriate schedules, and
the jobs as passive entities or “resources” that at any time
are used or handled by the agents according to schedules
learnt so far. The individual machines are assumed to be re-
stricted in their abilities and their knowledge; consequently,
the overall performance cannot be improved without appro-
priate interaction. A major characteristic of this approach
is that learning is distributed over several machines which
can carry out their learning activities independent of each
other and in a parallel and asynchronous way. With that,
MMS is not considered as a centralized process that is car-
ried out by a single entity (a machine or a human expert), but
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Figure 1. The MMS problem.

as a decentralized process that is conducted by all the ma-
chines involved in job execution. This inherent parallelism
and distributedness makes the learning approach novel and
different from other approaches to scheduling – adapative
scheduling as well as scheduling in parallel and distributed
systems – which are available inside and outside AI.

The article is organized as follows. The Section 2 de-
scribes the MMS scenario addressed in this work. The
Section 3 presents the multi-agent learning approach to this
scenario. The Section 4 shows experimental results that
illustrate the benefits of this approach. The Section 5 con-
cludes the paper with a discussion and an outlook on future
work.

2. Multi-Machine Scheduling (MMS)

The general MMS scenario considered in the work de-
scribed here is shown in the Figure 1. Several machines
collectively perform jobs, where a job consists of manufac-
turing a product out of raw material. For each product the
manufacturing process consists of r production steps, where
the individual steps are totally ordered in the sense that step i
has to be executed before step i+1 for all i 2 f1; : : : ; r�1g.
A single product (hence, a job) is completed after all produc-
tion steps have been successively applied to a single piece
of raw material. It is assumed that each machine is capable
of, or responsible for, executing one of the production steps,
and that each production step can be executed by at least
one machine. Throughout this paper, M denotes the set of
all machines and Mi = fMi;1; : : : ;Mi;mi

g � M denotes
the subset of machines capable of executing the production
step i. It is assumed that Mi \ Mj = ; for i 6= j and
M =

S
Mi. The machines contained in Mi (Mi+1) are

called the predecessors (successors) of the machines con-
tained inMi+1 (Mi). Each element in M1 �M2� : : :�Mr

consitutes a possible way of manufacturing products, and
is called a production path. Until the desired number of
products are manufactured, each machine being responsi-

ble for production step “1”continuously processes pieces of
raw material and immediately forwards the processed ma-
terial to one of its the successor machines. Associated with
each machine being responsible for production step “2”or
higher is a waiting queue in which arriving material is put
into interim storage if the machine is busy. As soon as a
machine becomes idle (i.e., after having completed its pro-
duction step and having forwarded the processed material to
a successor machine), it checks its waiting queue. Material
stored in a queue is processed in a first-in-first-out order.
The execution of a single production step is considered as
an atomic unit, that is, it is non-preemptive and can not be
interrupted.

The MMS scenario becomes challenging as soon as time
constraints on the manufacturing process are introduced. In
the work described here, two elementary types of time con-
straints are taken into consideration: the time pi;j that a
machine Mi;j requires for completing its production step,
and the time d

i+1;l
i;j that is required for delivering material

from a machine Mi;j to its successor machine Mi+1;l. Both
time constraints are assumed to be fixed during the whole
manufacturing process (i.e., the completion and delivery
times do not change). The Table 1 gives an example of
such a time-constrained MMS scenario. In this example
the manufacturing process consists of five production steps,
where each step can be carried out by four machines. As the
table shows, there are differences in the time which the ma-
chines require for completing the same production step (i.e.,
ti;j 6= ti;k for j 6= k). For instance, the machines M1;1,
M1;2, M1;3, and M1;4 require 10, 24, 32, and 39 units of
time, respectively, for completing the first production step.
Moreover, there are differences in the time required for de-
livering the material to the same successor machine (i.e.,
t
i+1;l
i;j 6= t

i+1;l
i;k for j 6= k). For instance, the delivery from

machines M1;1, M1;2, M1;3, and M1;4 to M2;1 takes 16, 9,
18, and 29 units of time, respectively. All other table entries
are to be read analogously. The current waiting time of a
piece of material arriving at a machine Mi;j (i.e., the time an



d
i+1;l
i;ji j pi;j

l = 1 l = 2 l = 3 l = 4

1 10 16 8 33 33
2 24 9 12 8 241
3 32 18 29 21 14
4 39 29 12 3 32

1 20 37 35 25 30
2 40 17 21 5 142
3 37 40 27 12 28
4 29 6 15 10 18

1 19 24 17 6 10
2 32 6 35 17 93
3 22 31 15 24 40
4 7 7 17 28 32

1 1 25 20 17 24
2 30 2 38 6 344
3 15 24 28 2 36
4 14 27 22 30 5

1 33 - - - -
2 15 - - - -5
3 23 - - - -
4 6 - - - -

Table 1. Example of a time-constrained MMS.

arriving piece has to wait in the queue of Mi;j until its pro-
cessing starts) can be approximated by ti;j�xi;j, where xi;j
is the current number of pieces of material already waiting
in Mi;j’s queue. The approximated waiting time for Mi;j

is denoted by wi;j. (Obviously it would be more precise
to write wi;j[t] and xi;j[t] to indicate that the waiting times
vary over time; in order to avoid unnecessary formalism,
however, the time index t is omitted.) It is assumed that
at each time a machine only knows (i) the delivery times d
to its successors, (ii) the processing times p of its succes-
sors, and (i) the current approximated waiting times w of
its successors. With that, at each time a machine does have
only a very limited view of its environment (including the
other machines) and the overall status of the manufacturing
process.

Introducing time constraints immediately leads to the fol-
lowing basic question called the MMS problem: Given the
number of products to be manufactured, what production
path should be chosen for each product such that the over-
all manufacturing time is kept low? What is searched for
is a schedule (i.e., an assigment of production paths to the
products to be manufactured) that keeps the manufacturing
time low. Requiring that the overall manufacturing time is
minimized would make the MMS problem particularly dif-
ficult, because in general it is a NP-hard problem to find
an optimal (shortest) multi-machine schedule. In order to
avoid the complexity of NP-hardness, especially in prac-

tical and industrial contexts it is only required to find an
almost optimal solution in reasonable time. The learning
approach described in the next section offers a solution to
the MMS problem that aims at fulfilling this more practical
requirement.

3. A Multi-Agent Learning Approach

The approach described here offers a multi-agent learn-
ing perspective of the manufacturing scenario specified in
the preceding section. According to this perspective, each
machine takes the role of an active entity or “agent” which
in some sense can be said to be intelligent and autonomous,
and each piece of material takes the role of a passive entity
or “resource” which is used or handled by the agents. The
intelligence and autonomy of each machine is manifested
in its ability to learn independent of the other machines to
which of its successors it should deliver a piece of material in
order to keep the overall manufacturing time low. Learning
by the individual agents takes place in a parallel way, and
this means that the “global” task of searching for an appro-
priate overall schedule is decomposed into smaller “local”
tasks of searching for appropriate successor machines.

The basic idea underlying the multi-agent learning ap-
proach is that each machine learns to judge its alternatives
of forwarding a piece of material. This judgement is based
on the estimated remaining time needed for completing a
product. Learning done by a machine consists of two basic
activities – deciding about successor machines and adjusting
the estimates – as described in the following. These activ-
ities are carried out by the machines independent of each
other and in a parallel and asynchronous way.

Deciding about successors. Mi;j calculates for each of its
successor machines Mi+1;k the estimated remaining manu-
facturing time ERMT

i+1;k
i;j , that is, the time that is needed

for completing a product out of a piece of material to be
delivered to Mi+1;k, by

ERMT
i+1;k
i;j = maxfwi+1;k � d

i+1;k
i;j ; 0g+ pi+1;k

| {z }
known

+ L
i+1;k
i;j| {z }

to be learnt

; (1)

where wi+1;k is the current waiting time of a piece arriv-
ing at Mi+1;k, di+1;k

i;j is the time for delivering a piece of
material from Mi;j to Mi+1;k, pi+1;k is the processing time
of Mi+1;k, and L

i+1;k
i;j is Mi;j’s estimate of the remaining

time required for completing a product after the successor
machine Mi+1;k will have finished its production step. The
expression maxfwi+1;k � d

i+1;k
i;j ; 0g takes care of the fact

that the waiting and delivery times overlap. As already
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Figure 2. The “chaining effect” of estimate adjustment.

mentioned in the preceding section, the delivery times and
the successors’ waiting and processing times are known to
Mi;j. What is unknown and has to be learnt by Mi;j is
the remaining processing time after a piece of material is
processed by the successor machine; how this is done is
described below. At every time during the manufacturing
process a machine Mi;j chooses its successors dependent
on its estimates ERMT

i+1;k
i;j . More precisely, the proba-

bility that Mi;j forwards a piece of material to its successor
Mi+1;k is inversely proportional to

e
��ERMT

i+1;k
i;j

Pmi+1

l=1 e
��ERMT

i+1;l
i;j

: (2)

With that, the higher (lower)ERMT
i+1;k
i;j the lower (higher)

is the probability that Mi;j forwards pieces of material to
Mi+1;k.

Adjustment of estimates. Assume that Mi;j decided to
forward a piece of material to Mi+1;k. After Mi+1;k has
processed the forwarded piece, it calculates for each of
its successors the values ERMT

i+2;l
i+1;k as described above.

Let ERMTmin
i+1;k = minmi+2

l=1 ERMT
i+2;l
i+1;k be the lowest of

these values. Mi+1;k informs its predecessor Mi;j about
ERMTmin

i+1;k, and Mi;j, in turn, adjusts its estimate Li+1;k
i;j

according to

L
i+1;k
i;j = L

i+1;k
i;j + � � (ERMTmin

i+1;k � L
i+1;k
i;j ) (3)

The intended effect of this adjustment, which can be viewed
as a simplified Q-learning scheme [16], is to decrease (in-
crease) an estimate L if leads to an overvaluation (underval-
uation) of the remaining manufactoring times. It is impor-
tant to see that modifications in the estimatesL are indirectly
propagated backward through the production paths, because
each value passed back to a predecessor influences the value
which this predecessor will pass back. With that, the ad-
justment aims at “strenghening” (“weakening”) chains of
machines, or production paths, that contribute to a decrease
(increase) in the overall manufacturing time. The Figure 2
illustrates the adjustment.

4. Experimental Results

This section presents experimental results on the time-
constrained MMS scenario shown in the Table 1. The ex-
perimental setting is as follows. The parameters � and
� are set to 1:0 and 0:3, respectively. Learning proceeds
in trials, where a trial consists of the manufacturing of n
products. At the beginning of the first trial all estimates
L are set to zero. The Figures 3 and 4 give the learning
curves together with two comparative curves for n = 50
and n = 500, respectively. Each data value shows the mean
overall manufacturing time obtained during the previous 10
trials. The “random” curves resulted from a manufactur-
ing process in which each machine chose its successor by
chance. The “L = 0” curves were obtained by using the
learning framework described above, but with the estimates
L
i+1;k
i;j (see Equation 1) set to a constant (zero). As the

curves show, learning clearly leads to a considerable de-
crease in the overall manufacturing time compared to the
“random” and “L = 0” approaches. As the Figure 3 (Fig-
ure 4) shows, averaged over all trials the learning approach
leads to an average overall manufacturing time of about 510
(3505). Against that, the “L = 0” approach leads to a mean
overall manufacturing time of about 620 (4705), and the ran-
dom approach leads to a mean overall manufacturing time of
about 780 (5570). (The shortest times measured during our
experiments were 483 for n = 50 and 3364 for n = 500.)
As the figures also show, learning converges rapidly, and
after about 50 trials the curves become flat and stable.

An important question is how the learning approach re-
acts to environmental changes. The Figures 5 and 6 show
how the curves change in response to a breakdown of the
machines M1;1, M2;1, M3;1, M4;1, and M5;1 (hence, of a
complete production path) after 50 trials. The learning ap-
proach had no problems in adapting to the new situation,
and again produced the best results compared to the other
two approaches. After less than 50 additional trials, the
learning curves converged to 575 (50 products) and 4460
(500 products). The Figures 7 and 8 show what happens if
the five defect machines again are available after a period
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for 500 products under stable conditions.

of 50 trials. Re-learning did not adapt to the new situation
as fast as the comparative approaches (measured in relative
changes), but after about 50 additional trials the learning
curves reached their initial level.

A number of experiments with further time-constrained
MMS scenarios have been conducted, varying the number
of production steps and the number of machines involved
in the different steps [9]. The results for these scenarios
qualitatively coincide with those described here.

5. Discussion and Outlook

This paper described an application of the multi-agent
learning paradigm known from Distributed AI to the prob-
lem of multi-agent scheduling. The major distinctive char-
acteristic of the proposed learning approach is its inherent
parallelism and distributedness w.r.t. the two learning steps
– successor selection and estimate adjustment – repeatedly
executed by the individual machines. Apart from that, this
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Figure 5. Learning and comparative curves
for 50 products in response to a machine
breakdown after 50 trials.
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Figure 6. Learning and comparative curves
for 500 products in response to a machine
breakdown after 50 trials.

approach has the following characteristic features:

� Scheduling is realized as an experience-driven and re-
active process in which the machines iteratively refine
a complete schedule.

� The individual machines act as autonomous entities,
although they influence each other in their activities
through the exchange of information about estimates
and waiting times. This information exchange allows
a basic coordination at the machine level and results
in a useful overall behavior at the system level.

� Only minimal demands are made on the abilities and
the knowledge of the individual machines. Addition-
ally, no specific demands (like “guaranteed delivery
time”) on the manufacturing environment are made.
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These features make the approach rather flexible, and appli-
cable to a broad range of scheduling problems.

The initial experimental results show that very good
schedules can be obtained in short time intervals, and they
indicate that it is worth to continue this research. Based
on the experience and insight gained so far, the following
research activities are planned:

� Further comparative experiments that allow to con-
trast the learning approach with other, existing ap-
proaches to MMS.

� Further experiments with different and more com-
plex scheduling scenarios in order to get a better un-
derstanding of the range of applicability as well as
the robustness of this approach. Ideally these ex-
periments are conducted in real-world domains like

multi-processor scheduling or industrial workflow op-
timization.

� Bottom-up extension of the learning approach towards
advanced cognitive abilities like (distributed) plan-
ning and negotiation as they are investigated in the
field of multi-agent systems and Distributed AI.

These directions are interrelated and should be pursued in
parallel: comparative studies should be also done in more
complex scenarios; and the more complex a scenario is, the
higher is the need for advanced abilities.

The past years have witnessed an increasing interest in
multi-agent learning. The reason for this is mainly based
on the insight that multi-agent systems, or Distributed AI
systems in general, typically are quite complex and hard
to specify in their behavioral dynamics. These systems
therefore should be equipped with the ability to self-improve
their performance. One of the central challenges in the
field of multi-agent learning is to apply the principles and
concepts of this kind of learning in real-world contexts. The
goal of the research described in this paper is to meet this
challenge.
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