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Abstract

The missing of an appropriate semantics of agent
communication languages is one of the most challeng-
ing issues of contemporary AI. Although several ap-
proaches to this problem exist, none of them is really
suitable for dealing with agent autonomy, which is a deci-
sive property of artificial agents. This paper introduces an
observation-based approach to the semantics of agent com-
munication, which combines benefits of the two most
influential traditional approaches to agent communica-
tion semantics, namely the mentalistic (agent-centric) and
the objectivist (i.e., commitment- or protocol-oriented) ap-
proach. Our approach makes use of the fact that the most
general meaning of agent utterances lays in their ex-
pectable consequences in terms of agent actions, and
that communications result from hidden but neverthe-
less rational and to some extent reliable agent intentions.
In this work, we present a formal framework which en-
ables the empirical derivation of communication meanings
from the observation of rational agent utterances, and in-
troduce thereby a probabilistic and utility-oriented per-
spective of social commitments.
Keywords: Agent Communication Languages, Open Mul-
tiagent Systems, Computational Autonomy, Markov Pro-
cesses, Artificial Sociality

1. Introduction

Currently, two major approaches to the meaning of agent
communication in a broader sense, covering both traditional
sentence semantics and pragmatics, exist. The mentalistic
approach (e.g. [5, 6]) specifies the meaning of utterances by
means of a description of the mental states of the respec-
tive agents (i.e., their beliefs and intentions, and thus in-
directly their behavior), while the more recent objectivist
approaches (e.g. [3], also called social semantics) try to
determine communication from an external point of view,
focussing on public rules. The former approach has some

well-known shortcomings, which eventually led to the de-
velopment of the latter: At least in open multiagent sys-
tems, agents appear more or less as black boxes, which
makes it in general impossible to impose and verify a se-
mantics described in terms of agent cognition. They could
only be put into practice making simplifying but unrealis-
tic assumptions to ensure mental homogeneity among the
agents, for example that the interacting agents were benev-
olent and sincere, and it neglects the social context of utter-
ances. Objectivist semantics in contrast is fully verifiable, it
achieves a big deal of complexity reduction through limit-
ing itself to a small set of normative rules, and has therefore
been a significant step ahead. But it oversimplifies social
processes favoring traditional sentence-level semantics in-
stead of pragmatics, and it doesn’t have a concept of mean-
ing indefiniteness, rational attitude (but see [4] for an ob-
jectivist approach to modeling the “intuitive” meaning of
speech acts) and agent malevolence. In contrast to these ap-
proaches, we propose a semantics which is based on the
assumption that the meaning of utterances lies basically in
their consequences in terms of expectable future agent ac-
tions which can be continuously learned and adapted from
observed agent actions [8]. These consequences are repre-
sented as probabilistic Social Interaction Structures, which
are a variant of Expectation Networks [9], and they are
learned by a semantics observer, which can be either an
agent participating in the communication himself, or an
external agent (e.g., a special middle agent, or a supervi-
sion facility of the system designer or application users).
This learning task puts two general assumptions about agent
communication into practice: i) observed agent interactions
within a certain social context are likely to reoccur in similar
situations in the future (empirical stationarity assumption),
and ii) agents act individually but more or less rationally
towards their communicated goals within a limited sphere
of communication (limiting their commitments’ trustabil-
ity and the predictability of other behavioral characteris-
tics). Therefore, the semantics observer deals with the “in-
tentional stances” [2] of otherwise opaque agents towards
their communicated goals and believes (learned empirically
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from observed utterances) rather than with real “cognitive
agents”. From these assumptions, we retrieve the following
replacements for traditional semantical concepts:

• Verification of semantics according to normative
rules as in social semantics → Verification regard-
ing a learned model of concrete agent communication
processes

• Assumption of mental agent rationality → revisable,
probabilistic expectation of limited rational behavior
(the so called rational hulls of communications)

• Social commitments and agent sincerity → revisable,
probabilistic expectation of the limited maintenance of
communicated goals by the uttering agents

For lack of space, we do not present the semantical model
for a concrete, speech-act based ACL here. Instead, we
propose the dynamic semantics of so-called elementary
communication acts (ECAs) which obtain their meaning
not from some given performative typology as usual, but
from their usage context. The theoretical assumption behind
ECAs is that all kinds of speech acts can be translated into
one or more demands to act in pragmatical conformance
with a declared future course of behavior (e.g., an informa-
tional act would be the request to communicate in confor-
mance with the expressed belief from now on, and a com-
mand would be the request to perform the described actions)
[9], whereby each ECA can be contextualized with com-
panion social structures resulting from other ECAs to clar-
ify and get accepted the demand (e.g. sanctions).
The reminder of this paper is organized as follows: The next
section defines Expectation Networks as the data structure
used to describe agent interaction. Section 3 extends this
definition with a formal learning and adaptation framework
for social (i.e., communication) structures, and finally, sec-
tion 4 draws some conclusions regarding current limitations
of our approach and future work.

2. Expectation Networks

Expectation Networks (ENs) are the graphical data struc-
tures we will use below for the stochastical modeling of
Social Interaction Structures. The formal EN definition we
present in this work is an improved yet simplified version
of the definition presented in [9].
The central assumption that is made in ENs is that ob-
served events like agent actions (especially symbolic agent
messages) may be categorized as expected continuations
of other observed event sequences. An edge leading from
event m to event m′ is thought to reflect the probability of
m and m′ being correlated from the observer’s point of view
(the descriptive power of ENs is thus similar to Markov pro-
cesses, but in contrast edges in ENs relate events, not states).

Expect ∈ [0; 1]
Agent → agent_1 | . . . | agent_n

PhysicalAction → move_object | touch_agent | . . .
Action → ECA(Agent ,Projection)

| do(Agent ,PhysicalAction)
ActionPattern → Action | ?

Projections → (Conditions,GoalStates)
Conditions → SimplePath
GoalStates → SimplePath
SimplePath → Action SimplePath | ε

A grammar for event nodes of ENs, generating the language M (the lan-
guage of concrete actions, starting with Action).

Table 1.

As for M, this is a formal language that defines
the events used for labeling nodes in expectation net-
works. Its syntax is given by the grammar in table 1. Agent
actions observed in the system can be either “physical” ac-
tions of the format (a, ac) where a is the executing agent,
and ac is an domain-dependent symbol used for a phys-
ical action, or symbolic elementary communication acts
ECA(a, c) sent from a to another agent with content c.
We do not talk about “utterances” or “messages” here, be-
cause a single utterance might need to be decomposed
into multiple ECAs. The symbols used in the Agent and
PhysicalAction rules might be domain-dependent sym-
bols the existence of which we take for granted. For con-
venience, agent(eca) shall retrieve the acting agent of an
ECA eca.
In addition to normal node labels, we use the sym-
bol (�EN ) to denote the root node of an specific EN. The
special symbol ? marks pseudo-nodes which are just graph-
ical abbreviations for the so-called completeEN which
models the uniform distribution of all possible combina-
tions and sequences of observable events (see below). A
“node” labeled with ? thus stands for a branch with infi-
nite depth. The content c of a non-physical action is given
by type Projections . The meaning of Projections will be
described later.
Syntactically, expectation networks are here repre-
sented as lists of edges (m, p, n) where m and n are ac-
tions, and p is a transition probability (expectability) from
m to n. We use functions in : V → 2C , out : V → 2C ,
source : C → V and target : C → V which return the in-
going and outgoing edges of a node and the source and
target node of an edge, respectively. children : V → 2V re-
turns the set of children of a node, with children(v) = ∅
in case v is a leaf. ≺ : V × V → {true, false} re-
turns true iff there is a path leading from the first argument
node to the second and the event associated with the sec-
ond node is expected to occur after the event of the first
node. C is the set of all edges, V the set of all nodes in
the EN. Edges denote correlations in observed communica-
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tion sequences. Each cognitive edge is associated with an
expectability (returned by Expect : C → [0; 1]) which re-
flects the probability of target(e) occurring after source(e)
in the same communicative context (i.e. in spatial proxim-
ity, between the same agents, etc.).
Sometimes we denote a path p in an EN leading
from v0 ∈ V to vn ∈ V as concatenations of mes-
sage labels (ECAs) Label(v0) � ... � Label(vn). The
� are sometimes omitted for shortness. |p| := n.
Node : SimplePathEN → V results in the last node of
a certain path given as a string of labels. Nodes or cor-
responding messages along a path p will be denoted as
pi. EN (M) is the set of all possible expectation net-
works over M.

Definition 1. An Expectation Network is a structure

EN = (V,C,M,Label ,Expect) ∈ EN (M)

where

• V with |V | > 1 is the set of nodes,

• C ⊆ V ×V are the edges of EN . (V,C) is a tree called
expectation tree. (V,C) shall have a unique root node
called �EN ∈ V which corresponds to the first ever ob-
served action. The following condition should hold:

∀v
∑

e∈out(v)

Expect(e) = 1

• M is the action language. As defined in table 1, ac-
tions can be symbolic (ECA(...)) or physical actions
(do(...)). While we take the existence and the mean-
ing of the latter in terms of resulting observer expecta-
tions as granted and domain-depended, the former will
be described in detail later.

• Label : V → M is the action label function for nodes,
with ∀v ∈ V : ∀e, f ∈ children(v) :
¬unify(Label(e),Label(f)) (where unify shall
be true iff its arguments are syntactically unifi-
able. Cf. [9] for the use of variables in ENs),

• Expect : C → [0; 1] returns the edges’ expectabilities.
For convenience, we define Expect(label|path) =
Expect(in(v)) if Node(path � label) = v.

Paths starting with � are called states (of communication).

3. Social Interaction Structures

Based on the definition of ENs, we can now define So-
cial Interaction Structures as a special kind of communica-
tion structures. Social Interaction Structures capture the reg-
ularities of externally observed communication processes.

The basic ideas behind this concept are that 1) agent social-
ity emerges from agent communication, and that 2) com-
munications form a so-called social system which is closed
in the sense that, to some degree, communication regulari-
ties come into being from communications themselves [1],
such that the semantics observer does not need to have to
“look inside the agents’ heads” to derive these structures.
Because of that, communication structures can meaning-
fully be learned from observations. Nevertheless, this learn-
ing process needs to be continuously repeated to adapt the
EN to new perceptions (since open systems with truly au-
tonomous agents with unknown life spans have no final
state), and does always imply the possibility of failure of
its prediction task (yet the term “expectation”). The Social
Interaction Structures (respectively the probabilistic distri-
bution it represents) triggered by a certain utterance (or an
ECA which is part of this utterance, respectively) in the con-
text of other utterances we call the semantics of this utter-
ance.

3.1. Social Interaction Systems

In [9], we’ve introduced Communication Systems as
a universal means for the description of social dynam-
ics of multiagent systems. The two main purposes of a
Communication System are i) to capture the social ex-
pectations (represented as an EN) in the current state of
a multiagent system under observation, and ii) to cap-
ture changes to these expectations. Whereas the EN models
the meaning of communicative action sequences at a cer-
tain time (i.e., their expected, generalized continuations in a
certain context of previous events), the communication sys-
tem models the way the EN is build up, and, if necessary,
adapted according to new observations of events. We in-
troduce now Social Interaction Systems (SIS) as a concrete
kind of general Communication Systems. The differ-
ence between general Communication Systems and Social
Interaction Systems is that the latter come with a con-
crete EN learning algorithm, whereas for general Commu-
nication Systems we just demand unspecifically that the
expectations within learned ENs shall reflect the expecta-
tion of the semantics observer regarding the future course
of events [9], not specifically taking into account agent ra-
tionality and social commitment. The term “interaction
system” comes from social systems theory [1], where it de-
notes the most basic kind of communication (=social) sys-
tem.

Definition 2. A Social Interaction System at time t is a
structure

SISt = (M, f,�t, ρ)
where

• M is the formal language used for agent actions (ac-
cording to table 1),
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• f : EN (M) × M → EN (M) is the expectations
update function that transforms any expectation net-
work EN to a new network upon experience of an ac-
tion m ∈ M. f(⊥,m) returns the so-called initial EN,
transformed by the observation of m. This initial EN
can be used for the pre-structuring of the social system
using given e.g. social norms or other a-priori knowl-
edge which can not be learned using f . Any ENs re-
sulting from an application of f are called Social In-
teraction Structures.
As a non-incremental variant we define f : M+ →
EN (M) to be
f(m0�m1...�mt) = f(...(f(f(⊥,m0),m1)...),mt),

• �t = m0 � m1... � mt ∈ M∗ is the list of all ac-
tions observed until time t. The subindexes of the mi

impose a linear order on the actions corresponding to
the times they have been observed1,

• ρ ∈ N is a time greater of equal the expected
life time of the SIS. We require this to calculate
the so-called spheres of communication (see be-
low). If the life time is unknown, we set ρ = ∞.

We refer to events and EN nodes as past, current or fu-
ture depending on their timely position (or the timely
position of their corresponding node, respectively) be-
fore, at or after t. We refer to ENt = f(�t) as the cur-
rent EN from the semantics observer’s point of view,
if the semantics observer has observed exactly the se-
quence m0m1...mt of events so far.
The intuition behind our definition of SISt is that a so-
cial interaction system can be characterized by how it would
update an existing expectation network upon newly ob-
served actions m ∈ M. The EN within SISt can thus be
computed through the sequential application of the struc-
tures update function f for each action within �, start-
ing with a given expectation network which models the
observers’ a-priori knowledge. �t−1 is called the con-
text (or precondition) of the action observed at time t.
To simplify the following formalism, we demand that an
EN ought to be implicitly complete, i.e., to contain all pos-
sible paths, representing all possible action sequences (thus
the EN within a social interaction system is always infi-
nite). If the semantics observer has no a-priori knowledge
about a certain branch, we assume this branch to repre-
sent uniform distribution and thus a very low probability
for every future decision alternative ( 1

|M | ), if the action lan-
guage is not trivially small.
Note that any part of an EN of an SIS does describe ex-
actly one time period, i.e., each node within the respective

1 For simplicity, we assume a discrete time scale with t ∈ N, and that
no pair of actions can be performed at the same time, and that the ex-
pected action time corresponds with the depth of the respective node.

EN corresponds to exactly one moment on the time scale in
the past or the future of observation or prediction, respec-
tively, whereas this is not necessarily true for ENs in gen-
eral. To express the definiteness of the past, we will later
define the update function f such that the a-posteriori prob-
abilities of past events (i.e., observations) become 1.
There shall be exactly one path pc in the current EN lead-
ing from start node �ent

leading to a node pct such
that |pc| = t and ∀i, 0 ≤ i ≤ t : Label(pci) = mi.
The node pci and the ECA mi are called correspond-
ing.
The semantics of �t (i.e. mt within context �t−1) is de-
fined as the probability distribution ∆ENt,�t

represented
by the branch starting with the node within ENt that corre-
sponds to �t:

∆ENt,�t
(w′) =

∏
i,1≤i≤|w′|

Expect(w′
i|�tw

′
1...w

′
i−1)∑

m∈M+

∏
i,1≤i≤|m|

Expect(mi|�tm1...mi−1)

for all w′ :⇔ �t�w′ ∈ M +. The w′
i denote single event la-

bels along w′.

3.2. Projections

As defined in table 1, ECAs consist of two parts: The ut-
tering agent, and the ECA content (projections). Each pro-
jection is a set of EN node pairs which are derived from the
following two syntactical elements (cf. table 1).

• Conditions chooses, using an EN path (without ex-
pectabilities), a possibly infinite set of EN states which
have to become reality in order to make the uttering
agent start to act towards its uttered goal (e.g. in “If
I deliver the goods, you must pay me the money”).
As shown in table 1, conditions are given as a linear
list of node labels. This path must match with paths
in the current EN, either absolutely beginning with �,
or starting at nodes after the node which corresponds
to the ECA. The end nodes of all matches in EN are
called the condition nodes of the ECA projections. So,
if the node list is empty, the only condition node is the
node corresponding to the ECA. The path matching is
always successful, since in our model, an EN implic-
itly contains all possible paths, although with a proba-
bility near zero for most of them.

• GoalStates chooses, using an EN path (without ex-
pectabilities), the (possibly infinite) set of states of the
expectation network the uttering agent is expected to
strive for. The uttered GoalStates path must match with
a set of paths within the EN such that the last node of
each match is a node of an EN branch that has a condi-
tion node from Conditions as its root. Both in Condi-
tions and GoalStates paths, wildcards “?” for single ac-
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tions are allowed.
For the purpose of this paper, we demand that the pro-
jections either refer to future interactions or be seman-
tically inactive (i.e., they already failed or have been
successful). Theoretically, we could also imagine pro-
jections regarding the past. In this case the respective
ECA would express that the uttering agent will likely
try to change the way other agents communicate about
the past, but we do not consider this difficult and rather
unusual case here for simplicity.
Note also that projected goal states possibly describe
actions the uttering agent announces to perform him-
self, not just explicit demands directed to other agents.
In this case, the rational hull for this goal consists of
behavior which likely increases the support from other
agents in order to make the goal state come true.

In the context of an EN, every projection implic-
itly refers to previous or future projections which announce
reasons or positive or negative sanctions the utter-
ing agent would impose on the ECA receiver in case of
a positive or negative response to the ECA. The projec-
tion of accompanying reasons and sanctions is an in-
evitable part of every elementary communication act,
since among self-interested agents it would be unrea-
sonable to make propositions without providing any re-
ciprocative utility to the receiver. They can be either
unspecified, to be specified later, or already be speci-
fied by means of previous events or even predefined social
structures like laws or other norms (which we do not con-
sider in this work). Of course, like any other kinds of
projections, they need not to be “honest”, or put into ac-
tion, or be effective.
Because the projections set can represent arbitrary prob-
ability distributions, it is possible for multiple ECAs to
express disjunctive statements like “I want you to do ei-
ther a or b”, if a and b are inconsistent events (i.e., events
which cannot occur both in the same context). Since con-
sistent ECAs uttered by the same agent are interpreted
as conjunctively related, and ECAs with redundant pro-
jections are allowed (which increases its impact of these
projections on the social structures), one can project arbi-
trary probability distributions using multiple ECAs. The
following functions returns the set of projections of a sin-
gle ECA ECA(condition, goal) ∈ M with paths
condition ∈ Conditions and goal ∈ GoalStates:

projectionsEN (M) : M → V × V
projections(V,C,M,Label,E)(ECA(ce1...cen, ge1...gem)) =

{(vn, vm) : {(vi, vi+1) : 1 ≤ i ≤ n − 1} ⊆ C
∧ unify(Label(vi), cei)
∧ {(vi, vi+1) : n + 1 ≤ i ≤ n + m − 1} ⊆ C
∧ unify(Label(vi), gei)

∧ vn ≺ vn+m ∧ unify(Label(vn), cen)
∧ unify(Label(vn+m), gem)}

unify(?, l) and unify(l, ?) shall always be true.
For convenience, we write Goal((c, g)) = g and
Condition((c, g)) = c.

3.3. Rational hulls

Per se, a projection has no power to make its goal states
become true. In fact, projections don’t have to be ratio-
nal at all. But we consider it to be rational that the utter-
ing agent will act towards the projected events at least for
some significant amount of time 2. This time span and the
events within, starting directly after the projecting utterance
event, are called sphere of communication. Theoretically,
each ECA could have its own sphere of communication. For
simplicity, in this work we assume that the sphere of com-
munication of any ECA eca is simply ρ− time(eca), where
the first operand is the expected time of the last observed ut-
terance within the SIS, and the second is the utterance time
of the projecting ECA. This setting is assumable realistic
for small and simple interaction systems, where the inter-
acting agents likely stick to their opinions and desires for
the whole and usually short duration of the SIS (like auc-
tions). For other domains we would have to determine the
spheres of communication a posteriori from empirical ob-
servations.
The actions the uttering agents is expected to perform
within the respective sphere of communication in order to
make his projections come true is called the rational hull
of the ECA. Thus, the determination of the rational hulls of
observed ECAs constitutes the crucial part of the determi-
nation of ACL semantics. The rational hull can be seen as
the actual pragmatics and meaning “behind” the more nor-
mative and idealistic concept of social commitments.
We assume the manifestation of the following attitudes by
means of ECAs within the respective spheres of communi-
cation and contextualized by means of other ECAs:

• Information of other agents about desired states of
communication This information is given as projec-
tions as described above.

• Support of other communicated goals The supportive
functionality communication has regarding other com-
munications is defined by the rational hulls of the sup-
ported elementary communication acts, which will be-
come implicitly more expectable too if supporting ra-
tional hulls increase their own expectabilities.

2 This time span of projection trustability can be very short though -
think of joke questions.
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• Manifestation of understanding In case the agents “un-
derstand” each other, ECAs cannot express contradic-
tion to the fact that other ECAs pursue the two previ-
ous intentions (i.e., Agent 1 does not need to believe
Agent 2 is right, but she needs to believe at least that
Agent 1 wants to be right in a specific case). We do not
consider misunderstanding in this work.

Capturing these intentions, and given the set of projec-
tions for each ECA eca uttered by an agent a, we calculate
the rational hull of a certain ECA using the following two
rules:

3.3.1. Rational choice After uttering eca, an agent a is
expected to choose an action policy such that, within the re-
spective sphere of communication, his actions max-
imize the probability of the projected state(-s). Let
p ∈ projections(eca,ENt) be a projection. Then, consid-
ered that p would be a useful state for the uttering agent
to be in, the rule of rational choice proposes that for ev-
ery node vd with agent(vd) = a along the path vt...p lead-
ing from the current node vt to p, Expect(in(vd)) = 1
for the incoming edge of vd, and that the expectabili-
ties of the reminding outgoing edges of the predeces-
sor of vd are reduced to 0 appropriately (if no other goals
have to be considered). To reduce the complexity of apply-
ing this general rule on the possibly infinite projections set,
and to observe the bounds of observer rationality, we pro-
pose the following constraints:

• expectabilities will be adapted within the respective
sphere of communication of eca only, even if the goal
state p is located beyond this sphere.

• expectabilities will be adapted only for parts of the
current EN with a significant evidence regarding ac-
tions performed by other agents. Since we represent
missing knowledge as uniform distribution, we put this
rule into practice by demanding that at decision nodes
of other agents (i.e., nodes with children representing
actions of agents other than the agent which uttered
eca) the expectabilities entropy entropyEN : V → R

should be below some given limit.
entropyEN (v) =∑

v′∈children(v) −Expect(in(v′))log2Expect(in(v′))

• if multiple elements in projections are identical de-
spite their context, and the paths leading to these pro-
jections overlap, priority is given to those projections
with a higher cumulative expectability. Finding the
right paths is a markovian multiple-decision problem
from the perspective of the uttering agent a (and thus
from the perspective of the semantics observer which
models the behavior of a also), which in general can-
not simply be solved by pairwise comparison of paths

leading from the current node to the competitive pro-
jections regarding their maximum expected utilities, if
projections(eca,ENt) = {p1, ..., pn} contains more
than two elements.

• The projections of previously uttered ECAs have to be
maintained, so the rule of rational choice needs to do a
weighting assessment of previously calculated rational
hulls instead of simply outdating them.

We use the following function uEN (M) : M×V → [0; 1] to
calculate the utility of an arbitrary node v regarding its sup-
porting function for a specific elementary communication
act eca.

uEN (eca, v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ∀i, 1 ≤ i ≤ n :
¬v ≺ Goal(pi) ∨ ¬Condition(pi) ≺ v

0 if entropyen(v) > κ, or else:

1 if ∃i : v = Goal(pi)
max

j,1≤j≤c
uEN (eca, vcj)

if agent(Label(vcj)) = agent(eca)
max

j,1≤j≤c
Expect(in(vcj))uEN (eca, vcj)

otherwise

with {p1, ..., pn} = projections(eca), {vc1, ..., vcc} =
children(v), and κ being some predefined entropy maxi-
mum.
max (...) could be replaced with (

∑
j,1≤j≤c ...)/c to pre-

fer a high number of paths leading to a goal instead of the
highest expectability for one goal node.

3.3.2. Empirical stationarity assumption If we would
use the previous rule as the only EN updating mecha-
nism, we would face at least three problems: 1) Predicting
agent actions according to the rule of rational choice re-
quires some given evidence about subsequent actions
of other agents. In case this previous evidence is miss-
ing, the rule of rational choice would just “convert”
uniform distribution into unform distribution. There-
fore, we have to provide an initial probability distribu-
tion the rule can be applied on3. 2) the set of projections
for a single ECA might be infinite. Most of the expectabili-
ties along the paths leading from the current node to these
EN branches sum up to very low probabilities for the re-
spective projection. Thus, a pre-selection of likely paths
will be necessary. And most important 3), the rule of ra-
tional choice does not consider individual behavioral char-
acteristics like (initially opaque) goal preferences of the

3 This probability distribution must also cover projected events and as-
sign them a (however low) probability even if these events are beyond
the spheres of communication, because otherwise it would be impos-
sible to calculate the rational hull.
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agents, but treats all projections uniformly. Goal hierar-
chies need thus to be obtained from past agent practice
as well as individual strategies towards these projec-
tions. For these reasons, we combine the application of the
rule of rational choice with the assumption of some sta-
tionarity of past event trajectories, i.e., the assumption
that previously observed action sequences repeat them-
selves in the future in a similar context. We use this as-
sumption to retrieve a probability distribution the rule of
rational choice can be applied on and weighted with subse-
quently.
In order to learn EN stationarity from previous observa-
tions, we follow the so-called variable-memory approach
to higher-order Markov chains using Probabilistic Suf-
fix Automata (PSA) introduced for L-predictable obser-
vation sequences [7]. This approach efficiently models
Markov chains of order L (i.e., with a model memory size
of L), allowing for rich stochastical models of observed se-
quences. The applicability of this approach to our scenario
is based on the heuristical assumption that many Social In-
teraction Systems are short-memory systems, which allow
the empirical prediction of social behavior from a rel-
atively short preceding event sequence (assumedly
pre-structuring using social norms , constraints from ratio-
nal choice etc is done properly). The main characteristic
of the PSA-based approach is its straightforward learn-
ing method, with expressiveness and prediction capabilities
comparable with the more common Hidden Markov Mod-
els [7].
For the calculation of the PSA from a set of sam-
ple agent action sequences, we use an algorithm intro-
duced in [7], originally coming from PAC-learning, in a
slightly modified version. It constructs a so-called Predic-
tion Suffix Tree (PST) (sometimes called Probabilistic Suf-
fix Tree) from the samples, which is roughly equivalent to
the target PSA, but easier to build up. Its only disadvan-
tage in comparison to the corresponding full PSA is that
the time complexity for the predicting task is higher ap-
proximately by the factor L.

Definition 3. A Prediction Suffix Tree with memory size L
over the language of concrete agent actions M is a structure
PSTL(M ) = (V,C,Label , γ) where

• (V,C) defines a tree graph consisting of a set of nodes
V, |V | > 0 and a set of edges C ⊆ V × V ,

• Label : V → M + returns for a node its label (with
maximum length L),

• γ : V → {(d1, ..., d|M |) : di ∈ R} returns for each
node a vector which defines the probability distribution
associated with this node. Each element γσ(v) of the
resulting vector corresponds to the conditional proba-
bility of the particular message σ in M .

∑
σ∈M γσ(v) = 1 should hold - nevertheless, vector

elements with a very low probability are omitted.

A PST is able to predict the probability of sequences us-
ing a tree traversal up to the root, as γ returns for a spe-
cific message its conditional occurrence probability given
that the largest suffix ν, |ν| ≤ L, of the message se-
quence observed before matches with the label of this node.
L should depend from the available memory resources, the
length of the samples and the expected spheres of commu-
nication.
In order to build up the PST from the empirical ob-
servations, we need to define the conditional em-
pirical probability within a set of sample action
sequences (where actions are either ECA utter-
ances or physical actions). As input we us the set
samplesSISt

= {m0m1...,mt} ∪ {r1
1...r

l1
1 , ..., r1

n...rln
n },

where m0m1...,mt is the sequence of events observed
so far for SISt until time t, and the reminder of this
set consists of additional samples to improve predic-
tion accuracy. The r1

i rli
i are optional; we can omit these

additional samples and learn the PSA from the single se-
quence m0m1...,mt only. But as a rule of thumb, the
lengths of the sample sequences should be at least polyno-
mial in L[7]. If an a-priori EN is given for pre-structuring,
the ri could be obtained from a frequency sampling of se-
quences from this EN, which is straightforward and thus
omitted here. For lack of space, we also omit the de-
tailed PST-learning algorithm, which can be found in [7].
The probability for the PST-generation of an event se-
quence m = m1...mn ∈ (M )n is

PPST (m) =
n∏

i=1

γmi
(vi−1)

where v0 is the (unlabeled) root node of the PST and for
1 ≤ i ≤ n − 1 vi is the deepest node reachable by a tree
traversal corresponding to a prefix of mimi−1...m1, start-
ing at the root node.
From the probability distribution obtained from PPST , we
derive the corresponding EN using the function δ : M+ →
EN (M):

δ(m0m1...,mt) = (V,C,M,Label, Expect)

with
V = {�} ∪ {vp : p ∈ paths},
Label = {vp1...pn

�→ pn : p1 � ... � pn ∈ paths},
C = {(�, vp) : |p| = 1, vp ∈ V }
∪ {(vp1...pn−1 , vp1...pn

) : vp1...pn−1 ∈ V ∧ vp1...pn
∈ V },

Expect =

{in(vp1...pn
) �→ PPST (p1...pn)

PPST (p1...pn−1)
, vp1...pn

∈ V }, and

paths = {p : p ∈ M + ∧ PPST (p) > Pmin}, where Pmin

is a predefined lower bound for significant expectabilities.
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3.3.3. Rationality-biased empirics Putting together the
rule of rational choice and the assumption of empirical sta-
tionarity, we gain the following (non-iterative) definition for
the Social Interaction Structures update function f of an
SIS.

f(m0m1...mt) = 	(ENstat , �ENstat
)

with ENstat =
(VENstat

, CENstat
,M, LabelENstat

, ExpectENstat
) such that

VENstat
= {vm0 , ..., vmt

} ∪ Vδ,
CENstat

=
Cδ ∪ {(�ENstat

= vm0 , vm1), ..., (vmt−1 , vmt
), (vmt

, �δ)}
and ∀i, 1 ≤ i ≤ t :
Expect(in(vmi

)) = 1, ∀i, 0 ≤ i ≤ t : Label(vmi
) = mi,

with
(Vδ, Cδ,M, Labelδ, Expectδ) = δ(m0m1...mt).

Expect(in(vmi
)) = 1 reflects the definiteness of al-

ready observed events.

Above, 	 : EN (M) × SimplePath → EN (M) ap-
plies the results of the calculation of rational hulls to the
entire EN resulting from the PST by means of a recur-
sive top-down tree traversal which is limited by the max-
imum search depth maxdepth (alternatively, we could
apply a entropy-based search limitation criterion simi-
lar to the criterion used in 3.3.1).

	((V,C,M,Label, Expect), path) =

{
(V,C,M,Label, Expect) if |path| > maxdepth

(V,C,M,Label, Expect|children(v)|) otherwise

using v = Node(path), ∆U (v) = {(vj , u(Label(v), vj)) :
vj ∈ V, agent(Label(vj)) = agent(Label(v))},

∀vj ∈ V : Expect0(in(vj)) =⎧⎪⎪⎨
⎪⎪⎩

Expect(in(vj)) + ∆U (v)[vj ]
2

if Time(vj) < ρ ∧ agent(Label(vj)) = agent(Label(v))
Expect(in(vj)) otherwise

and
∀n, 1 ≤ n ≤ |children(v)| :

Expectn :⇔ (V,C,M,Label, Expectn) =
	((V,C,M,Label, Expectn−1),
path � Label(children(v)n)).

Here, ∆U (v) assigns every node vj its utility regarding the
ECA Label(v), if the acting agent is the same for v and
vj . Expect0(in(vj)) assigns the node its new expectabil-
ity (equally weighted with its previous expectability, which
might be already be utility biased from another ECA), and
Time(vj) < ρ limits the application to nodes within the

sphere of communication. ∆U (v)[vj ] denotes the utility for
reaching v assigned to vj .

4. Conclusions

We have introduced an approach to the semantics of
agent communication which combines features from tradi-
tional mentalistic and objectivist approaches. Being a novel
proposal, several important things remain to do. Most im-
portant, ECAs have no explicit content level (ontological
level) in a traditional sense, which is rather implicitly en-
coded within the EN the ECAs refer to. More specifically,
ECAs and ENs currently do not have the power to explic-
itly model logical statements. We propose the combination
of situation calculus with ENs for this purpose, similar to
the annotation of EN nodes with states of a knowledge base
as introduced in [9]. To be of practical use with common
ACLs, ECAs also need to be obtainable from conventional
speech acts, which requires a translation of performatives
into ECA patterns. Another issue is that the EN learning al-
gorithm does not yet make use of generalizable behavior
patterns that multiple agents have in common (like agent
roles). And finally, we are currently evaluating an imple-
mentation of the presented framework regarding its appli-
cability for open multiagent systems.
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