
A Multi-Agent Approach to Distributed Rendering Optimization

Carlos Gonzalez-Morcillo�

Escuela Superior de Informatica
University of Castilla-La Mancha, Spain

Gerhard Weiss
Software Competence Center GmbH

Hagenberg, Austria

Luis Jimenez and David Vallejo
Escuela Superior de Informatica

University of Castilla-La Mancha, Spain

Abstract

Physically based rendering is the process of generating a 2D
image from the abstract description of a 3D Scene. Despite
the development of various new techniques and algorithms,
the computational requirements of generating photorealistic
images still do not allow to render in real time. Moreover,
the con�guration of good render quality parameters is very
dif�cult and often too complex to be done by non-expert
users. This paper describes a novel approach calledMAga-
rRO (standing for “Multi-Agent AppRoach to Rendering Op-
timization”) which utilizes principles and techniques known
from the �eld of multi-agent systems to optimize the render-
ing process. Experimental results are presented which show
the bene�ts ofMAgarRO-based rendering optimization.

Introduction
The process of constructing an image from a 3D model com-
prises several phases such as modelling, setting materials
and textures, placing the virtual light sources, and �nally
rendering. Rendering algorithms take a description of ge-
ometry, materials, textures, light sources and virtual cam-
eras as input and produce an image or a sequence of images
(in the case of an animation) as output. There are differ-
ent rendering algorithms – ranging from simple and fast to
more complex and accurate ones – which simulate the light
behavior in a precise way. High-quality photorealistic ren-
dering of complex scenes is one of the key goals and chal-
lenges of computer graphics. Unfortunately this process is
computationally intensive and may require a huge amount of
time in some cases, and the generation of a single high qual-
ity image may take several hours up to several days on fast
computers. The rendering phase is often considered to be a
crucial bottleneck in photorealistic projects. In addition, the
selection of the input parameters and variable values of the
scene (number of samples per light, depth limit in ray trac-
ing, etc.) is very complex. Typically a user of a 3D render-
ing engine tends to “over-optimize”, that is, to choose values
that increase the required rendering time considerably with-
out affecting the perceptual quality of the resulting image.

� Also research at Software Competence Center GmbH in Ha-
genberg, Austria
Copyright c
 2007, Association for the Advancement of Arti�cial
Intelligence (www.aaai.org). All rights reserved.

This paper describes a novel optimization approach called
MAgarRObased on principles known from the area of multi-
agent systems. Speci�cally,MAgarROis based on design
principles of the FIPA standards (http://www.�pa.org), em-
ploys adaptation and auctioning, and utilizes expert knowl-
edge. The key advantages of this approach are robustness,
�exibility, scalability, decentralized control (autonomy of
the involved agents), and the capacity to optimize locally.

The paper is structured as follows. The following sec-
tion overviews the state of the art and the current main re-
search lines in rendering optimization. Thereby the focus
is on the most promising issues related to parallel and dis-
tributed rendering. The next section describesMAgarROin
detail. Then, in the next section empirical results are shown
that have been obtained for different numbers of agents and
input variables. The �nal section offers a careful discussion
and concluding remarks.

Related Work
There are a lot of rendering methods and algorithms with
different characteristics and properties (e.g., (Kajiya 1986;
Veach & Guibas 1997)). Chalmers et al. (Chalmers, Davis,
& Reinhard 2002) expose various research lines in the ren-
dering optimization issues.

Optimization via Hardware . Some researchers use pro-
grammable GPUs (Graphics Processing Units) as massively
parallel, powerful streaming processors than run specialized
portions of code of a raytracer (Hachisuka 2005). Other
approaches are based on special-purpose hardware archi-
tectures which are designed to achieve maximum perfor-
mance in a speci�c task (Woop, Schmittler, & Slusallek
2005). These hardware-based approaches are very effective
and even the costs are low if manufactured in large scale.
The main problem is the lack of generality: the algorithms
need to be designed speci�cally for each hardware architec-
ture.

Optimization using parallel/distributed computing. If
the rendering task is divided into a number of smaller tasks
(each of which solved on a separate processor), the global
time may be reduced signi�cantly. In order to have all pro-
cessing elements fully utilized, a task scheduling strategy
must be chosen. There are many related approaches such
as (Fernandez-Sorribes, Gonzalez-Morcillo, & Jimenez-
Linares 2006) which use Grid systems on the Internet.



Knowledge about the cost distributionacross the scene
(i.e., across the different parts of a partitioned scene) can sig-
ni�cantly aid the allocation of resources when using a dis-
tributed approach to rendering. There are many approaches
based on knowledge about cost distribution; a good example
is (Reinhard, Kok, & Jansen 1996).

Distributed Multi-Agent Optimization . The inherent
distribution of multi-agent systems and their properties of
intelligent interaction allow for an alternative view of ren-
dering optimization. (Kuoppa, Cruz, & Mould 2003) uses
a JADE-based implementation of a multi-agent platform to
distribute interactive rendering tasks (rasterization) across
a network. Although this work employs the multi-agent
metaphor, essentially it does not make use of multi-agent
technology itself. In fact, the use of the JADE framework
is only for the purpose of realizing communication between
nodes, but this communication is not knowledge-driven and
no “agent-typical” mechanism such as learning and negotia-
tion is used.

Comparison toMAgarRO
MAgarROsigni�cantly differs from all related work on ren-
dering in its unique combination of the following key fea-
tures:

� Decentralized control.MAgarROrealizes rendering in a
decentralized way through a group of agents coordinated
by a master, where the group can be formed dynamically
and most services can be easily replicated.

� Higher level of abstraction. While other approaches typ-
ically realize parallel optimization at a low level of ab-
straction that is speci�c to a particular rendering method,
MAgarROworks with any rendering method. All that is
required byMAgarROare the input parameters of the ren-
der engine to be used.

� Use of expert knowledge.MAgarROemploys Fuzzy Set
Rules and their descriptive power in order to enable easy
modelling of expert knowledge about rendering and the
rendering process.

� Local optimization. Each agent involved in rendering
can employ different models of expert knowledge. In this
way, and by using a �ne-grained decomposition approach,
MAgarROallows for local optimization of each rendering
(sub-)task.

In combining these features,MAgarROexploits and inte-
grates some ideas from related approaches to parallel render-
ing. For instance,MAgarRO's cost prediction map (called
Importance Mapand described below) combines prediction
principles described in (Gillibrand, Debattista, & Chalmers
2005; Schlechtweg, Germer, & Strothotte 2005) with ele-
ments of Volunteer Computing as proposed in (Anderson
& Fedak 2006) and demand driven auctioning known from
agent-based task allocation.

The MAgarROApproach
MAgarROis a system which gets a 3D Scene as input and
produces a resulting 2D image. From the point of view of
the user the system works in the same way as local render

engines do, but the rendering in fact is made by different
agents spread over the Internet.

MAgarROuses the ICE (http://www.zeroc.com) middle-
ware. The location service IceGrid is used to indicate in
which computers the services reside. Glacier2 is used to
solve the dif�culties related with hostile network environ-
ments, making available agents connected through a router
and a �rewall.

Figure 1:MAgarROgeneral Class diagram.

The overall architecture ofMAgarROis based on the de-
sign principles of the FIPA standard. In �gure 1 the gen-
eral class diagram for the architecture is shown. There are
some top-level general services (Start Service, Agent Man-
agement System, Directory Facilitator andAgent Communi-
cation Channel) available to all involved agents. On start-
up, an agent is provided with a root service that describes or
points to all the services available in the environment.

Architectural Overview
In MAgarROtheAgent Management System(AMS) is a gen-
eral service that manages the events that occurs on the plat-
form. This service also includes a naming service forWhite
Pageswhich allow agents to �nd one another. A basic ser-
vice calledDirectory Facilitator (DF) providesYellow Pages
for the agents. As suggested by the FIPA standard, the oper-
ations of this service are related to the services provided by
an agent, the interaction protocols, the ontologies, the con-
tent languages used, the maximum live time of registration
and visibility of the agent description in DF. Finally,MAg-
arROincludes a basic service calledAgent Communication
Channelthat receives and sends messages between agents.

In addition to the basic FIPA services described above,
MAgarRO includes speci�c services related to Rendering
Optimization. Speci�cally, a service calledAnalyst stud-
ies the scene in order to enable the division of the render-
ing task. A blackboard is used to represent some aspects of
the common environment of the agents. The environmental
models processed by the agents are managed by theModel
Repository Service. Finally, a master service called (Master)
handles dynamic groups of agents who cooperate by ful�ll-
ing subtasks. The Figure 2 illustrates this.

Figure 2 also illustrates the basic work�ow inMAga-
rRO(the circled numbers in this �gure represent the follow-



Figure 2: General work�ow and main architectural roles.

ing steps).1 – The �rst step is the subscription of the agents
to the system. This subscription can be done at any mo-
ment; the available agents are managed dynamically. When
the system receives a new �le to be rendered, it is delivered
to the Analyst service.2 – The Analyst analyzes the scene,
making some partitions of the work and extracting a set of
tasks.3 – The Master is noti�ed about the new scene which
is sent to the Model Repository.4 – Some of the agents
available at this moment are managed by the Master and no-
ti�ed about the new scene.5 – Each agent obtains the 3D
model from the repository and an auction is started.6 – The
(sub-)tasks are executed by the agents and the results are
sent to the Master.7 – The �nal result is composed by the
Master using the output of the tasks previously done.8 –
The Master sends the rendered image to the user. Key issues
of this work�ow are described in the following.

Agent Subscription
As shown in Figure 1, aRender Agentis a specialization of
a standardAgent, so all the functionality and requirements
related with FIPA are inherited in his implementation. The
�rst time an agent subscribes to the system, he runs a bench-
mark to obtain an initial estimation of his computing capa-
bilities. This initial value is adapted during rending in order
to obtain a more accurate prediction.

Analysis of the Scene based on Importance Maps
MAgarROemploys the idea to estimate the complexity of
the different tasks in order to achieve load-balanced parti-
tioning.

The main objective in this partitioning process is to obtain
tasks with similar complexity to avoid the delay in the �nal
time caused by too complex tasks. This analysis may be
done in a fast way independently of the �nal render process.

At the beginning, the Analyst makes a fast rasterization
of the scene using an importance function to obtain a grey
scale image. In this image (calledImportance Map) the dark
zones represents less complex areas and the white zones the

more complex areas. As it is shown in Figure 3, the glass is
more complex than the dragon because it has a higher num-
ber of ray interactions.

Once the importance map is generated, a partition is con-
structed to obtain a �nal set of tasks. These partitions are
formed hierarchically at different levels, where at each level
the partitioning results obtained at the previous level are
used. At the �rst level, the partition is made taking care
of the minimum size and the maximum complexity of each
zone. With these two parameters, theAnalystmakes a recur-
sive division of the zones (see Figure 3). At the second level,
neighbor zones with similar complexity are joined. Finally,
at the third level theAnalysttries to obtain a balanced divi-
sion where each zone has nearly the same complexity/size
ratio. The idea behind this division is to obtain tasks that all
require roughly the same rendering time. As shown below
in the experimental results, the quality of this partitioning is
highly correlated to the �nal rendering time.

Rendering Process
Once the scene is available in theModel Repository, the
Master assigns agents to the individual tasks identi�ed by
the Analyst. These agents, in turn, apply in parallel a tech-
nique called pro�ling in order to get a more accurate estima-
tion of the complexity of each task.1 Speci�cally, the agents
make a low resolution render (around 5% of the �nal num-
ber of rays) of each task and announce on theBlackboard
the estimated time required to do the �nal rendering on the
blackboard.

Blackboard service The blackboard used by the agents
to share their knowledge about the rendering task is imple-
mented as a service offering a set of read and write opera-
tions. The basic blackboard data structure (as shown in Fig-
ure 2) has 7 �elds labelled as follows.IdWork is a unique
identi�er for each scene,IdTask is a unique identi�er for
each task of each work,Sizeis the number of pixels of each
task (width x height),Complexityis the estimated complex-
ity of this task, calculated by means of the importance map,
Test is the Estimated Time calculated through pro�ling by
the agents,Treal is the actual time required to �nish a task,
andAgentis the name of the agent who is responsible for
rendering this task.

Adaptation As said above, the estimated time is repre-
sented in the same way by all agents. More precisely, each
agent has an internal variable that represents his relative
computational power (Vcp). During run time, each agent
adapts the value of his variableVcp to obtain a more accu-
rate estimation of the required processing time as follows.
Whenever there is a difference between the estimated time
Test and the actual completion timeT of a task, then an agent
updates his internal variableVcp according to

Vcp = (1 � k) � Vcp + k � (T � Test ) (1)
wherek a constant. Small values of k assure a smooth adap-
tation. (k is set to 0.1 in the experiments reported below.)

1Pro�ling is a technique which traces a small number of rays in
a global illumination solution and uses the time taken to compute
this few rays to predict the overall computation time.



Figure 3:Importance maps (a-c). (a) Blind partitioning (First Level).(b) Join zones with similar complexity (Second Level).
(c) Balancing complexity/size ratio (Third Level).Artifacts (d-e). (d) Without interpolation undesirable artefacts appear
between neighboring parts. (e) Linear interpolation solves this problem (at a price of slightly higher rendering costs).

This mechanisms should be improved with a more complex
learning method that takes in account the historical behavior
and the intrinsic characteristics of the task (type of scene,
rendering method, etc...).

Auctioning At every moment during execution, all agents
who are idle take part in an auction for available tasks. It
is assumed that the agents try to obtain more complex tasks
�rst. If two or more agents bid for the same task, the Mas-
ter assigns it on the basis of the so called credits of these
agents. The credit of an agent represents the success and
failure w.r.t. previous tasks.

Using Expert Knowledge When a task is assigned to an
agent, a fuzzy rule set is used in order to model the expert
knowledge and optimize the rendering parameters for this
task. Fuzzy rule sets are known to be well suited for expert
knowledge modeling due to their descriptive power and easy
exensibility. Each agent may model (or capture) different
expert knowledge with a different set of fuzzy rules. In the
following, the rule set we used for Pathtracing rendering is
described. The output parameters of the rules are:

� Recursion Level [Rl ], de�ned over the linguistic vari-
ables (Zadeh 1975)f VS, S, N, B, VBg2. This parameter
de�nes the global recursion level in raytracing (number of
light bounces).

� Light Samples [Ls], de�ned over f VS, S, N, B, VBg.
Number of samples per light in the scene.

� Interpolation Band Size [Ibs], de�ned overf VS, S, N,
B, VBg. Size of the interpolation band in pixels. It is used
in the �nal composition of the image (as we will see in the
next section).

The previous parameters have a strong dependency with
the rendering method chosen (in this case Pathtracing).
Against that, the following parameters, which are the an-
tecedents of the rules, can be used for other rendering meth-
ods as well.

� Complexity [C], de�ned overf VS, S, N, B, VBg. Com-
plexity/size ratio of the task.

� Neighbor Difference [Nd], de�ned over f VS, S, N, B,

2The notation used for the linguistic variables is typical in some
works with Fuzzy Sets. This is the correspondence of the linguistic
variables: VS isVery Small, S isSmall, N is Normal, B is Big and
�nally VB is Very Big.

Figure 5: Diagram of task decomposition and interpolation
band situation.

VBg. Difference of complexity of the current task in re-
lation to its neighbor tasks.

� Size[S], de�ned overf S, N, Bg. Size of the task in pixels
(width x height).

� Optimization Level [Op], de�ned over f VS, S, N, B,
VBg. This parameter is selected by the user.

In the case of the Pathtracing method, the rule set is de-
�ned as follows (only two of 28 rules are shown, all rules
have been designed by an expert in PathTracing):

– R1 : If C is f B,VBg ^ S is B,N ^ Op is VB
then Ls is VS^ Rl is VS

– R22 : If Nd is VB then Ibs is VB

The output variables have their own fuzzy sets; we use trape-
zoidal functions as shown in Figure 4.

Final Result Composition
With the results generated by the different agents, theMaster
composes the �nal image. A critical issue w.r.t. composition
is that there may be slight differences (e.g., in coloring) be-
tween the neighboring parts obtained from different agents;
these differences result from the random component which
PathTracing contains as a Monte Carlo based method. Fig-
ure 3.d illustrates this problem. For that reason, theMas-
ter smoothes the meeting faces of neighboring parts through
a linear interpolation mask called Interpolation Band (Fig-
ures 3.e, 5).

In MAgarROthe size of the Interpolation Band is an out-
put parameter of the rule set. In particular, the parameter
gets a higher value if the difference between the quality of
neighboring zones is important. To reduce rendering time,
this parameter should be kept as small as possible to avoid
unnecessary ”`double work”' done by different agents. This



Figure 4: De�nition of the output variables.

is particularly important if the zone is very complex, as this
also implies high costs for rendering the interpolation band.
(In our applications the amount of time required byMAga-
rROfor interpolation was between 2% and 5% of the overall
rendering time.)

Experimental Results
The results reported in this section have been generated with
the implementation ofMAgarROwhich we have made avail-
able for download at (http://code.google.com/p/masyro06/)
under GPL Free Software License. Moreover, these re-
sults are based on the following computer and parameter
setting: eight identical computers were connected to run
in parallel (Centrino 2 Ghz, 1GB RAM running Debian);
as a rendering method Pathtracing (Yafray render engine
(http://www.yafray.org)) was used; eight recursion levels in
global con�guration of raytracing; and 1024 Light samples.
The scene to be rendered contains more than 100.000 faces,
5 levels of recursion in mirror surfaces and 6 levels in trans-
parent surfaces (the glass). With this con�guration, render-
ing on a single machine without any optimization took 121
minutes and 17 seconds3.

Figure 6:Left: First/second/third level of partitioning with
the N (Normal) optimization level. Right: Different opti-
mization levels (all with third level of partitioning).

Table 1 shows the time required using different partition-
ing levels. These times have been obtained using theN
(Normal) optimization level (Figure 6 Left). Using a simple
�rst-level partitioning, a good render time can be obtained
with just a few agents in comparison to third-level partition-
ing. The time required in the third partitioning level is larger
because more partitions in areas having higher complexity
(i.e., in the glasses) are needed. This higher partition level
requires the use of interpolation bands and as an effect some

3121:17 for short, below the amount of time needed for render-
ing is sometimes expressed in the formatMinutes:Seconds.

Table 1: Different partitioning withNormal optimization
level.

Agents 1st Level 2nd Level 3rd Level
1 92:46 82:36 105:02
2 47:21 41:13 52:41
4 26:23 23:33 26:32
8 26:25 23:31 16:52

Table 2: Third level of partitioning with different Number of
Agents and level of optimization.

Agents VS S N B VB
1 125:02 110:50 105:02 85:50 85:06
2 62:36 55:54 52:41 42:55 42:40
4 31:10 27:11 26:32 22:50 22:40
8 23:43 20:54 16:52 16:18 15:58

complex parts of the image are rendered twice. For exam-
ple, the rendering time with one agent is105minutes in the
third level and93 minutes in �rst level. However, when the
number of agents grow, the overall performance of the sys-
tem increases because the differences in the complexity of
the tasks are relatively small. In �rst and second-level par-
titioning, there are complex tasks that slow down the whole
rendering process even if the number of agents is increased
(the time required with four or eight agents is essentially the
same). On the other hand, the third partitioning level works
better with a higher number of agents.

Table 2 shows the time required to render the scene using
different levels of optimization but always third-level parti-
tioning (Figure 6 Right). By simply using aSmall level of
optimization results are obtained that are better than the re-
sults for rendering without optimization. The time required
with Very Smalloptimization exceeds the time to render the
original scene. This is because additional time is required
for communication and composition.

As a �nal remark, note that optimization may result in dif-
ferent quality levels for different areas of the overall scene.
This is because more aggressive optimization levels (i.e.,
Big or Very Big) may result in a loss of details. For ex-
ample, in Figure 7.c, the re�ections on the glass are not so
detailed as in Figure 7.a.

The difference between the optimal render and the most
aggresive optimization level (Figure 7.c) is minimal4.

4In this example, the difference between the optimal render
(Figure 7.a) and the image obtained with theVery Bigoptimization



Figure 7: Result of the rendering using different optimization levels. (a) No optimization and render in one machine. (b)
Normal(c) Very Big(d) Difference between(a) and(c) (the lighter colour, the smaller difference).

Discussion and Conclusion
The media industry is demanding high �delity images for
their 3D scenes. The computational requirements of full
global illumination are such that it is practically impossi-
ble to achieve this kind of rendering in reasonable time on a
single computer.MAgarROhas been developed in response
to this challenge.

The use of the importance map assures an initial time es-
timation that minimizes the latency of the latest task. In par-
ticular, as a result of optimizationMAgarROachieves over-
all rendering times that are below the time required by one
CPU divided by the number of agents. Most important,MA-
garROis a novel multi-agent rendering approach that offers
several desirable features which together make it unique and
of highest practical value. In particular:

� It is FIPA-compliant.

� MAgarROcan be used in heterogeneous hardware plat-
forms and under different operating systems (including
GNU/Linux, MacOSX, Windows, etc.) without any
changes in the implementation.

� It enables importance-driven rendering through its use of
importance maps.

� It employs effective auctioning and parameter adaptation,
and it allows the application of expert knowledge in form
of �exible fuzzy rules.

� It applies the principles of decentralized control (is scal-
able). The services are easily replicable (possible bottle-
necks in the �nal deploy can be minimized).

� In presence of failures, it is easy to apply the typical tech-
niques of volunteer computing systems.

MAgarROis pioneering in its application of multi-agent
principles to 3D realistic rendering optimization. This opens
several interesting research avenues. Speci�cally, we think it
is very promising to extendMAgarROtoward more sophis-
ticated adaptation and machine learning techniques. In our
current work, we concentrate on two research lines. First,
the combination of different rendering techniques within the
MAgarRO framework. Due to the high abstraction level
of MAgarRO, in princple different render engines can be
combined to jointly generate an image, using complex tech-
niques only if needed. Second, we are exploring the possi-

level (see Figure 7.d) is 4.6% including the implicit noise typical
to monte carlo methods (around 1.2% in this example).

bilities to equipMAgarROwith agent-agent real-time coor-
dination schemes that are more �exible than auctioning.

Acknowledgments
This work has been funded by the Junta de Comunidades de
Castilla-La Mancha under Research Project PBC06-0064.

References
Anderson, D. P., and Fedak, G. 2006. The computational
and storage potential of volunteer computing. InSixth
IEEE International Symposium on Cluster Computing and
the Grid (CCGRID'06), 73–80.
Chalmers, A.; Davis, T.; and Reinhard, E. 2002.Practical
Parallel Rendering. AK Peters Ltd.
Fernandez-Sorribes, J. A.; Gonzalez-Morcillo, C.; and
Jimenez-Linares, L. 2006. Grid architecture for distributed
rendering. InProc. SIACG '06, 141–148.
Gillibrand, R.; Debattista, K.; and Chalmers, A. 2005. Cost
prediction maps for global illumination. InTPCG 05, 97–
104. Eurographics.
Hachisuka, T. 2005. GPU Gems 2: Programming
Techniques for High Performance Graphics and General-
Purpose Computation. Addison-Wesley Professional.
Kajiya, J. T. 1986. The rendering equation.Computer
Graphics20(4):143–150. Proc. of SIGGRAPH'86.
Kuoppa, R. R.; Cruz, C. A.; and Mould, D. 2003. Dis-
tributed 3d rendering system in a multi-agent platform. In
Proc. ENC'03, 8.
Reinhard, E.; Kok, A.; and Jansen, F. W. 1996. Cost Pre-
diction in Ray Tracing. InProceedings 7th Eurographics
Workshop on Rendering, 41–50.
Schlechtweg, S.; Germer, T.; and Strothotte, T. 2005. Ren-
derbots – multiagent systems for direct image generation.
In Computer Graphics Forum, volume 24, 137–148.
Veach, E., and Guibas, L. J. 1997. Metropolis light trans-
port. In SIGGRAPH '97, 65–76. New York, NY, USA:
ACM Press/Addison-Wesley Publishing Co.
Woop, S.; Schmittler, J.; and Slusallek, P. 2005. Rpu: a
programmable ray processing unit for realtime ray tracing.
In Proc. SIGGRAPH '05, 434–444.
Zadeh, L. A. 1975. The concept of a linguistic variable
and its applications to approximate reasoning. part i, ii, iii.
Information Science.


