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Abstract

In the past decade natural language processing has developed into one of the key fields in artificial
intelligence with neural networks and deep learning techniques improving performance in several
tasks. Deep neural networks require stacking a lot of layers which makes their training hard and
slow while overfitting arises as an extra problem. This paper explores possibilities of tackling these
issues by improving the so called “dropout” method and by exploring a more flexible constructive
structure of the network. Conducted experiments show that dropping neurons according to their
training behavior improves performance while a constructive approach can quickly lead to the close
to optimal network structure while on the same time avoiding overfitting.

1 Introduction
Natural Language Processing (NLP) [3] is the research field that explores how computers can be used
to understand and manipulate natural language text or speech in order to accomplish useful tasks. For
example, given a specific document, entities, such as places and names, can be recognized, referenced
words of pronouns can be highlighted, and the sentiment of a piece of text can be understood.

A neural network [7] is defined as a set of nodes (called neurons) connected through directed links,
where each node is a process unit that performs a static node function on its incoming signal to generate
a single node output. Neural networks are able to perform many tasks like pattern recognition, compres-
sion, prediction and can be applied to different kind of data (texts, images, etc) and to different fields
(medicine, financial,etc).

Recently, Deep Learning (DL) [1] was developed (as a branch of Machine Learning) as a family
of algorithms that attempt to model high-level abstractions in data by using complex structures and
architectures. The idea is to utilize neural network layer structure by stacking many layers on top of
each other, such that a breaking down mechanism is facilitated. Therefore, each layer in a Deep Neural
Network (DNN) works as one transformation to further abstract the data.

Deep Neural Networks have been successfully applied to many NLP tasks [4] leading to effective
systems but sometimes the size of the network (increased number of layers and neurons) as well as the
training time are forbidding for efficient use. Despite this drawback, there is still little research work on
ways to identify more efficient ways of training a DNN or on how to find an optimal structure (without
training hundreds of different networks) and this is the main issue that the current paper is addressing.

The remainder of this paper is organized as follows: Section 2 will present the background work
on the field. Sections 3 and 4 will introduce the ideas of a more flexible way of training Deep Neural
Networks while experimental results will be presented in Section 5. Finally, Section 6 will conclude the
paper.



2 Related work

2.1 Deep Neural Networks and Natural Language Processing
In every NLP task, the first and most important step is to come up with an effective representation of text.
A successful way of representing documents is by introducing the idea of word embeddings [10], where
each word is represented by a vector. Deep neural networks can be trained in order to discover latent
vector representations of natural language words in a semantic space [8, 13, 17]. A word embedding
W : words → Rn is a parametrized function mapping words in some language to high-dimensional
vectors (perhaps 200 to 500 dimensions). For example, we might find that: wking = (0.2,−0.4, 0.7, ...),
wqueen = (0.0, 0.6,−0.1, ...). W is initialized to have random vectors for each word. A neural network
is utilized for predicting e.g. whether a 5-gram (sequence of five words) is “valid”. Valid n-grams can
be found in a large enough corpus (like Wikipedia) and then in order to create some invalid n-grams one
can replace one word with a random one making the 5-gram nonsensical. For example, a valid 5-gram
could be: “cat sat on the mat”, whereas a non-valid could be: “cat sat song the mat”. By this way, one
can learn effective word embeddings that can be used as a base for every NLP task.

Utilizing such representations, deep learning has been also applied to several NLP tasks like Named
Entity Recognition (NER) and Part-of-Speech (POS) tagging [4], question answering [9] and document
classification [11]. Initial results suggest that DNN systems perform with comparable accuracy and
speed with traditional methods. Advantages of such methods can be summarized in two facts: (a) a
generic (regardless the task) approach and architecture can be constructed and (b) the internal repre-
sentations (multiple layers of abstraction) are decided by the network itself. Biggest criticism comes
from the fact that DNN approaches completely ignore the already acquired knowledge of features that
perform well in specific NLP tasks (although sometimes being very specific).

2.2 Deep Neural Networks performance issues
Research in DNNs [15] has shown that typically when more layers are stacked on top of each other,
performance is improved due to the fact that the data is abstracted in a larger degree. The presence of
many layers and neurons may lead to overfitting as well as to slow training (convergence), therefore it
would be useful to develop techniques that avoid these issues.

Recently, a technique called “dropout” [16] was proposed as a way to avoid Neural Networks over-
fitting. This method randomly switches on/off neurons only for one epoch during the training phase,
generally with probability 0.5. By this way, it is made sure that the network is trained to be as general as
possible and does not get too specialized to the data of the training set. In the end you can imagine the
final network as a fusion of different neural networks with good generalization capability. Experiments
showed that such a network performs significantly better than benchmark neural networks on many dif-
ferent datasets and reasonably better on text classification problems. An extension to dropout method
was proposed (called “standout”) [2] which associates highly correlated units and combines them into
a single hidden unit with a lower dropout probability. Despite the fact that selection of neurons to be
dropped is not completely random, the structure of the network remains the same throughout the training
and freed units are used for other purposes.

In the next two Sections, two improvements to DNNs performance will be presented: The first one
presents an alternative of selecting neurons to be dropped and the second one provides a framework
for a more flexible structure (allowing adding/deleting neurons). Both approaches are tested on their
performance in a document classification task, presented in the Experiments Section.

3 Making the dropout method more deterministic
In this Section we are exploring possibilities to differentiate the dropout criterion according to a specific
criterion and not randomly (with equal probability p = 0.5 for each neuron). The focus is on DNNs
trained with backpropagation algorithm but the same idea could also be applied to different structures
(like Restricted Boltzmann Machines). For the purpose of demonstration consider a neural network like
the one in Figure 1 and suppose the following notation for the hidden layer l (where neuron j belongs):

• z(l) is the vector of inputs into layer l,



Figure 1: Standard Neural Network with Back Propagation training

• y(l) is the vector of outputs from layer l,

• w(l) are the weights at layer l and

• θ(l) are the biases for layer l

Then, the feed-forward operation of a standard neural network for any neuron j can be described by
the following Equations:
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where f is the activation function.
Similarly, given that the output error from the feed-forward operation at the output layer is δ(L), the

back-propagation error for any layer l (l ∈ 1, 2, ..., L− 1) is given through the following Equation:

δl = (w(l+1))T · δ(l+1) ◦ f ′(zl) (3)

where f ′ is the derivative of activation function, T is the transpose operator, and ◦ is the Hadamard
Product (element wise operator between elements of vectors). After the backpropagation of the errors,
the weights are updated according to the following Equation (similar operation is applied to the bias
updating):

∆w(l) = −α · δ(l+1) · (y(l))T (4)

where α is the learning rate. For a full derivation of these Equations readers are encouraged to refer
to the literature [6].

During training, the changing characteristics of any neuron (j) are the propagated error (δj) and the
weight vector change (wj). The idea here is to temporarily dropout neurons that their structural content
does not change (i.e. their weight vectors remain almost the same or neurons that the backpropagated
error doesn’t significantly change). For example, if the error that is backpropagated to a neuron (or
similarly the neuron’s weight vector) does not significantly change between two epochs then it might
be temporarily switched off. Significant change is determined by a threshold ε which can either set
empirically or by experimenting.

The selection of neurons that are switched off is determined by the following Equations for the two
criteria (first one checks for significant changes in the error and the second one for significant changes
in the weight vector).

Criterion 1:

{
j :

Na∑
i=1

‖wj,i(t)−wj,i(t− 1)‖ ≤ ε

}
(5)



Criterion 2:

{
j :

Na∑
i=1

‖δj,i(t)− δj,i(t− 1)‖ ≤ ε

}
(6)

where j and i refer to the synapses between any two neurons j and i (obviously neuron j is at layer
l and neuron i at layer l+ 1 just like in Figure 1), t refers to current epoch and t− 1 to the previous one,
Na is the number of neurons at layer (l + 1). Emphasis is given to the individual synapses change and
their weighted sum is taken into account. In the case of dropped neurons there are also some changes
to Equation 2 since y(l+1)

j has to be zero for the neurons that satisfy Equation 5 or 6. A slight variation
to this dropout would be not to deterministically select all neurons that satisfy the above criterion but
instead just increase their probability to be dropped (i.e. not be p = 0.5 like in the original dropout, but
slightly more). More insights on this will be presented in the Experiments Section.

4 Making the structure of the network more flexible
A neural network has a fixed structure and once initialized, it is not possible to change that structure any
more. This is often considered a drawback, because different problems or different datasets may require
different structures. One could argue that the dropout method presented in the previous Section already
provides such a flexibility, but here the idea is to actively alter the network structure by adding neurons.
This idea is in accordance to biological neural development models and the basic principles of adaptation
[18] (neurons adapt to their input sources, can be interchangeable or reusable in cases structure changes)
and constructivism [14] (development of neural structures is gradual and appropriately biased by the
environment).

The proposed method uses a simple criterion to add a hidden neuron to the neural network, based on
the back-propagated error. When the back-propagated error associated with a neuron does not reduce
by an amount ε after a specific number of training epochs τ , then it is assumed that the current neuron
has reached its modelling limit. In detail, the criterion is described using the following Equation:

Na∑
i=1

‖δj,i(t)− δj,i(t+ τ)‖ ≤ ε (7)

where t = τ, 2τ, 3τ, ... and the rest symbols were explained in Equations 5 and 6. If more than one
neuron fulfil this criterion, then all the corresponding layers are expected to be enhanced by another new
neuron.

Instead of just adding a neuron and inspired from biology cell division process [12], we replace the
selected neuron (one that satisfies the criterion of Equation 7) by two new neurons, which share the
same number of connections as the parent neuron. The weights of these new neurons are calculated as
in [12]:

w(1) = (1 + γ) ·w (8)
w(2) = −γw (9)

where w is the weight vector of the parent neuron, w(1) is the weight vector of the first new neuron,
w(2) is the weight vector of the second new neuron and γ is the mutation parameter which takes a
random value according to a Gaussian distribution with a mean of zero and a variance of one.

5 Experimental results
Several experiments were conducted in order to evaluate the proposed extensions. Hardware used for the
experiments are an 8-Core AMD Computer with 8 GB of RAM and the task selected was the classifica-
tion of the 20 NewsGroup (20NG) dataset which consists of 18845 documents taken from the USENET
newsgroup collection 1. Each post belongs exactly to one category (in total there are 20). Word em-
beddings, as described in Section 2 are used as a representation method and dataset was accordingly

1https://archive.ics.uci.edu/ml/datasets/Twenty+Newsgroups



split to training, testing and validation set. All results (from different experiments) presented here are
an average over 10-fold-cross-validation processes.

5.1 Experimenting with different dropout methods
The first experiment implements the idea of random dropout and compars it to the extensions of adaptive
dropout and the two methods proposed in Section 3. Increasing the chance of a neuron to be dropped
when the backpropagated error change is low, shows an improvement, because when such neurons are
dropped, then the network only tries to improve in respect to neurons with a high backpropagated error.
On the other hand, using the weight vector difference, does not improve the performance of the network
and is not robust at all. Results can be seen (along with traditional and adaptive dropout) in Table. Due to
different implementations (Dropout and Adaptive Dropout were checked using the scikit-learn package,
while our proposed methods (DROPW, DROPE) were implemented from scratch) training time could
not be compared.

Table 1: Applying different dropout variations (ε = 1E − 04, p = 1) on 20NG dataset

Accuracy STDEV
Dropout (DROP) 0.791 0.021

Adaptive Dropout (Standout) (STAND) 0.821 0.011
Dropout Acc. to weight vector change (DROPW) 0.788 0.074

Dropout Acc. to back-prop. error change (DROPE) 0.829 0.018

Moreover, several experiments were conducted in order to define whether it is better to just dropout
all neurons that satisfy criterion 2 (we only work with that since criterion 1 does not yield good results)
or just increase their probability to be dropped. Comparison was conducted using a fixed network archi-
tecture (3 hidden layers 400-500-400) and using a subset of the original dataset (around 5000 documents
in order to facilitate speed and check for overfitting). Probability to drop the neurons satisfying the cri-
terion we set was varied from p = 0.5 to 1 with step 0.05, while probability to drop the rest neurons
was set to 1− p. Figure 2 shows the training and test error with respect to p. We see that training error
remains almost flat as p increases (result of a good training) and testing error improves until p = 0.85
and is increased (but not significantly) as p becomes close to 1. Accuracy for these experiments did not
change significantly (performed always over 0.81 till 0.83) so one could assume that the value of p is
not that sensitive to affect accuracy. Results in Table 1 were obtained using p = 1.

Figure 2: Effect of probability p of dropping a neuron on a subset of 20NG

Another hyperparameter that needs to be tuned is the threshold which determines whether to drop or
not a neuron and is denoted by ε in Equations 5 and 6. Empirically this can be set to 1E− 04. Note that
different values of p and ε can also affect performance, so a combined analysis was conducted using the



same dataset (part of 20NG) as the one for investigating parameter p and for checking all combinations
of p (range from 0.5 to 1) and ε (range from 1E − 06 to 1E − 02). Full results are not presented here
due to space limitations but Table 2 presents the effect of ε given p = 1.

Table 2: Effect of parameter ε to DROPE algorithm, tested on a subset of 20NG

ε value % Training Error % Testing Error Epochs
1E-02 5.26% 18.39% 130.3
1E-03 4.58% 16.61% 218.5
1E-04 2.94% 13.26% 302.3
1E-05 3.01% 15.86% 540.5
1E-06 2.88% 17.47% 692.6

It can be seen that a relatively large value of ε is beneficial for both training and testing error. Very
large values (like 1E − 02) increase both training and testing error because more neurons are dropped
while smaller values (like 1E − 06) may provide comparable training error but this clearly leads to
overfitting (since many epochs are needed) and testing error increases (generalization fails). Results in
Table 1 were obtained using ε = 1E − 04.

5.2 Experimenting with a constructive approach
Second batch of experiments applied the method described in Section 4. For these experiments, param-
eters τ (controls the rate of epochs that new neurons are added) and ε (controls the ratio of error change)
have to be tuned. Several experiments were performed using the same subset of the dataset as the one
for parameter analysis of the DROPE method, where τ was varied from 10 to 50 and ε was varied from
1E − 06 to 1E − 02. Given this analysis, τ was set to 20 and ε was set to 1E − 03 for the rest of
the experiments as they were found to be the optimal ones. Also, Table 3 summarizes the results for
ε = 1E − 03 and for the whole range of τ . It can be seen that a moderate value of τ is beneficial for
both the number of epochs and the training error. Otherwise, the algorithm tends to add more neurons
at the same time, which increases both the training error and the number of epochs required to run.

Table 3: Effect of parameter τ to the constructive approach, tested on a subset of 20NG

τ value number of neurons % Training Error % Testing Error Epochs
10 1208.8 3.23% 18.39% 363.2
20 1202.4 4.22% 16.61% 374.1
30 1239.2 5.12% 13.26% 602.1
40 1323.7 6.40% 15.86% 945.8
50 1388.4 7.68% 17.47% 1270.2

Given the description of the constructive approach, network can add neurons at any time during the
training (given of course the value of τ ). Training progress along with the number of hidden neurons
are presented in Figure 3.

As it can be seen, network tries to add more neurons at the very beginning of the training for con-
secutive epoch ranges and then it works with this structure until it reaches its performance limit. At this
point the same process is repeated again. Given various experiments and different startup architectures
(varied number of layers and neurons), approach followed had the same characteristics: addition of
neurons in the beginning, training with this structure and then repetition of the same process, sometimes
also at the very end of the training.

Finally, another experiment was performed in order to evaluate the final structure created by utilizing
two neural networks: The first neural network (DROPE NN) uses a fixed structure (which is close to
optimal given previous experiments) of 3 hidden layers (400-500-400 neurons) and the second one
(CONSTR NN) starts from a smaller network consisting of 3 hidden layers each one consisting of 50
neurons. We could start from a more minimal structure but starting with a modest number of neurons
facilitates training and is in agreement with the neural development which suggests that nearly all neural
cells used through the lifetime have been produced in the first months of life [5]. The results of this



Figure 3: Training process and network construction by the proposed algorithm using 20NG dataset

experiment can be seen in Figure 4. The constructive neural network is adding neurons as training
advances and ends up with approximately the same accuracy (and almost the same structure) as the
fixed one. However, it takes longer for CONSTR NN to converge but the number of extra epochs maybe
compensated from to the fact that for new datasets optimal architecture is not known beforehand. It
can also be seen that accuracy improvement is in accordance with the addition of new neurons: When
number of neurons is almost stable, then accuracy is increased but in epoch ranges where neurons are
massively added accuracy does not improve.

Figure 4: Comparison of DROPE and constructive neural network on 20NG dataset

6 Conclusion
In this paper, Deep Neural Networks in the domain of Natural Language Processing were explored.
Dropout method was enhanced with an effective criterion which takes into account the back-propagated
error (and thus the progress of the training). Dropping neurons with this more deterministic way yields
better results in respect to both training and testing error but also training time. An attempt to approach
the close to optimal neural network structure in a constructive way (by adding neurons to the layers)
showed interesting results despite the fact that it increased training time.

The prospect of self-building and/or adaptable neural networks is promising and can be further
explored. Future work involves exploring ways of removing neurons (by merging similar units) and
even add or remove layers when is needed, a process which will allow for truly flexible neural networks.
Training time remains a sensitive issue so techniques in order to improve that (especially when using
flexible and changing network structures) will also be considered as extensions to current work.
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