Multiagent Learning for Open Systems:
A Study in Opponent Classification

Michael Rovatsos, Gerhard WeiR3, and Marco Wolf
{rovat sos, wei ssg, wol f }@n. t um de

Department of Informatics
Technical University of Munich
85748 Garching bei Miinchen
Germany

Abstract. Open systems are becoming increasingly important in a variety of dis-
tributed, networked computer applications. Their characteristics, such as agent
diversity, heterogeneity and fluctuation, confront multiagent learning with new
challenges. This paper presents the interaction learning meta-architecture InFFrA
as one possible answer to these challenges, and introduces the opponent classifi-
cation heuristic ADHOC as a concrete multiagent learning method that has been
designed on the basis of InFFrA. Extensive experimental validation proves the
adequacy of ADHoOC in a scenario of iterated multiagent games and underlines
the usefulness of schemas such as InFFrA specifically tailored for open multia-
gent learning environments. At the same time, limitations in the performance of
ADHoOC suggest further improvements to the methods used here. Also, the results
obtained from this study allow more general conclusions regarding the problems
of learning in open systems to be drawn.

1 Introduction

The advent of the Internet brought with it an increasing interest in open systems [8,
10]. Real-world applications such as Web Services, ubiquitous computing, web-based
supply chain management, peer-to-peer systems, ad hoc networks for mobile computing
etc. involve interaction between users (humans, mobile devices, companies) with differ-
ent goals whose internal structure is intransparent for others. Agent populations change
dynamically over time. Drop-outs, malicious agents and agents who fail to complete
tasks assigned to them may jeopardise the robustness of the overall system. Centralised
authorities and “trusted third parties” are (if they exist at all) not always trustworthy
themselves, since ultimately they are also serving someone’s self-interest.

Obviously, these phenomena confront multiagent systems (MAS) [19] research with
new challenges, because many assumptions regarding the knowledge of agents about
each other are no more realistic. While the MAS community as a whole has been con-
centrating on relatively closed systems for a long time, multiagent learning researchers
have long dealt with the problems of openness. This is because of the characteristic
of machine learning [12] approaches in general to look at problems of acquiring useful
knowledge from observation in complex domains in which this knowledge is not readily
available. Thus, it is only natural to take a learning approach to build intelligent, flexible

and adaptive agents that can operate in open systems — in fact, the amount of potentially
“missing” knowledge offers a seemingly endless source of new learning problems that
need to be tackled.

Mostly, the purpose of applying learning techniques in the construction of adaptive
agents is to learn how to predict the behaviour of the system one way or the other. As far
as multiagent learning is concerned, this means learning how to predict the behaviour
of other agents, e.g. by learning their preferences [2], their strategies [3,6,17], the
outcomes of joint actions or all of these [15], i.e. in some way to acquire a model of the
opponent®. Most of the time, these models are also used to derive an optimal strategy
towards this opponent at the same time, such as in [5, 3, 6, 15].

The majority of these multiagent learning approaches adopt a heavily cognition-
biased view of learning, which aims at extracting as much information from observation
as possible about an individual. However, in large-scale, open MAS, in which agents
have only occasional encounters with peers they are acquainted with, learning models
of individual peer agents may not be feasible. This is because the cost of acquiring and
maintaining an adequate model of the other normally outweighs its potential benefits if
the probability of interacting with that same agent in the future is not very high.

This problem has lead us to investigate a more social view of multiagent learning
that is more adequate for open systems, which, at its core, focuses around the idea of
learning the behaviour of agents in certain classes of interactions rather than the spe-
cific properties of particular agents. At the level of architectures for social learning of
this kind, we have developed InFFrA [14] which provides a meta-model for developing
appropriate learning algorithms. In this paper, we present a concrete implementation
of this model for the problem of learning in multi-agent games called ADHoc (Adap-
tive Heuristic for Opponent Classification) and illustrate its usefulness by providing
extensive experimental results. These confirm our initial intuition that the road to the
development of new multiagent learning methods for open systems is long, but that our
methodology is a first step in the right direction.

The remainder of this paper is structured as follows: we first introduce our general
intuitions about learning in open systems (section 1). Subsequently, section 2 presents
an abridged introduction to the INFFrA social learning architecture. Section 3 then intro-
duces ADHoC, an application of InNFFrA to learning in multi-player games and section
4 presents extensive experimental results obtained from ADHOC simulations. In section
5, we discuss these results and make suggestions for further improvements, and section
6 concludes.

2 Open Systems: A New Challenge for Multiagent L earning

One of the most prominent problems multiagent learning (MAL) research deals with is
how to build an agent who can learn to perform optimally in a given environment. We
will restrict the scope of our analysis to a sub-class of this problem, in which we are
more specifically concerned with building an optimal “goal-rational agent” by assuming

1 We will make frequent use of the terms opponent, adversary, peer, partner etc. They are all
intended to mean “other agent” without any implications regarding the competitive or cooper-
ative nature of the interactions.

that an agent has preferences regarding different states of affairs and that she deliberates
in order to reach those states of the world that seem most desirable to her (usually, these
preferences are expressed by a utility function or an explicit set of goals/tasks).

The environment such an agent is situated in is assumed to be co-inhabited by other
agents that the agent interacts with. We assume that, in general, agents’ actions have
effects on each other’s goal attainment so that agents have to coordinate their actions
with each other to perform well.

In the absence of omnipotence, it is useful and often necessary for agents to organ-
ise their experience in a cause-and-effect model of some sort in order to be able to adapt
to the environment and to take rational action; only if the rules that govern the world
are discovered can an agent actively pursue its goals through means-ends-reasoning,
because such means-ends-reasoning requires making predictions about the effects of
one’s own actions. Such a model of the world should not only capture the properties of
the physical environment, but also describe (and predict) the behaviour of other agents,
as they also influence the outcome of certain activities. In our analysis, we concentrate
on the latter problem and neglect all problems associated with learning to behave opti-
mally in a (passive) environment. This is to say that our focus is on agents that model
other agents in order to predict the future behaviour of those agents.

While the activity of modelling other agents forms part of virtually any “socially
adaptive” agent design, open MAS have some special characteristics that add to the
complexity of this modelling activity:

1. Behavioural diversity: In open systems, agents are usually granted (deliberately or
inevitably) more degrees of freedom in their behaviour. For example, they might
be untruthful, malicious or not behaving rationally from the modelling agent’s per-
spective. Generally speaking, an agent that is trying to model other agents can make
less a priori assumptions about the internals or the behaviour of other agents (such
as the benevolence and rationality assumptions in the above examples). In machine
learning terms, this means that the hypothesis space [12] used when learning about
others will be larger than it is in closed systems.

2. Agent heterogeneity: Open systems allow for a larger variety of possible agent de-
signs than closed systems do. One problem this leads to is that an agent who is
building models of other agents will need to maintain many different models. Worse
still, it might be the case that the modelling agent has to apply different learning
methods for different peers (for example, a logic-based adversary might be better
modelled using inductive logic programming while decision tree learning might be
better when modelling a reactive opponent).

3. Agent fluctuation: If agents may freely enter and leave the system, it is not clear
how the agent should assess the value of learning a model of them. This makes
it very hard to estimate how much effort should be spent on learning models of
particular agents (given that the agent has only limited resources some of which
it also needs for perception, planning and execution), considering that information
about certain agents might become useless anytime. A side-effect of this is also
that it becomes much harder to develop a reasonable “exploration vs. exploitation”
strategy, not knowing which partners deserve being “explored”.

Taken together, these phenomena might be seen as different aspects of what can be
called the contingent acquaintances problem (CAP) of modelling other agents: the
problem that the behaviours of known peers are unrestricted, that there are many dif-
ferent agents the modelling agent is acquainted with, and that there is uncertainty about
the value of information obtained from learning more about these acquaintances.

Although opponent modelling (OM) has received considerable attention from the
multiagent learning community in recent years, we feel that this problem has been
largely ignored. Our own research has been focusing on a specific approach that ad-
dresses the CAP by different means called interaction frame learning. Essentially, it
is based on the idea of learning different categories of interactions instead of partic-
ular models of individual adversaries, while combining learned patterns of behaviour
appropriately with information about some specific individual agent whenever such in-
formation is available.

3 InFFrA: A Meta-Architecture for Social Learning

INFFrA (the Interaction Frames and Framing Architecture) is a sociologically informed
framework for building social learning and reasoning architectures. It is based on the
concepts of “interaction frames” and “framing” which originate in the work of Erving
Goffman [9]. Essentially, interaction frames describe classes of interaction situations
and provide guidance to the agent about how to behave in a particular social context.
Framing, on the other hand, signifies the process of applying frames in interaction situ-
ations appropriately. As Goffman puts it, framing is the process of answering the ques-
tion “what is going on here?” in a given interaction situation — it enables the agent to
act in a competent, routine fashion.

In a MAL context, interaction frames can be seen as learning hypotheses that con-
tain information about interaction situations. This information should suffice to struc-
ture interaction for the individual that employs the frames. Also, frames describe recur-
ring categories of interaction rather than the special properties of individual agents, as
most models learned by OM techniques.Thus, learning interaction frames is suitable to
cope with the class of learning problems described in the previous section.

A brief overview of InFFrA will suffice for the purposes of this paper and hence we
will not go into its details here. More complete accounts can be found in [14] and [16].

In their computationally operationalised version, frames are data structures which
contain information about

the possible interaction trajectories (i.e. the courses the interaction may take in
terms of sequences of actions/messages),

roles and relationships between the parties involved in an interaction of this type,
contexts within which the interaction may take place (states of affairs before, dur-
ing, and after an interaction is carried out) and

beliefs, i.e. epistemic states of the interacting parties.

Figure 1 shows a graphical representation for the interaction frame (henceforth “frame”)
data structure. As examples for how the four “slots” of information it provides might
be realised, it contains graphical representations of groups (boxes) and relationships

Frame

roles & relationships trajectories
R1 R2 R3
G
Q)
@4 2 g
O)
G ——®
G
context beliefs

preconditions trajectory model postconditions|
time

activation deactivation|
conditions conditions

causal
beliefs

sustainment conditions

Fig. 1. Interaction frame data structure.

(arrows) in the “roles and relationships” slot and a protocol-like model of concurrent
agent actions in the “trajectories” slot. The “contexts” slot embeds the trajectory model
in boxes that contain preconditions, postconditions and conditions that have to hold
during execution of the frames. The “beliefs” slot contains a semantic network and a
belief network as two possible representations of ontological and causal knowledge,
where shaded boxes define which parts of the networks are known to which partici-
pant of the frame. A final important characteristic of frames is that certain attributes
of the above must be assumed to be shared knowledge among interactants (so-called
common attributes) for the frame to be carried out properly while others may be private
knowledge of the agent who “owns” the frame (private attributes). Private attributes
are mainly used by agents to store their personal experience with a frame, e.g. utili-
ties associated with previous frame enactments and instance values for the variables
used in generic representations that describe past enactments (“histories™), inter-frame
relationships (“links”) etc.

Apart from the interaction frame abstraction, InFFrA also offers a control flow
model for social reasoning and social adaptation based on interaction frames, through
which an InFFrA agent performs its framing. Before describing the steps that are per-
formed in this reasoning cycle, we need to introduce the data structures on which they
operate. They are

- the active frame (the unique frame currently activated),

4act|on behaviour generation <[frame enactment] frame adjustment
module module module

InFFrA Framing Architecture frame.
repository

perceived frame activated frame | |difference model

trjec- retain

“tory

I@H‘ﬂ@l % I@}W@@ % "C,,OlmeXt/S.Bel;EfS'

roles

compiiéhcé T ~deviance
erception = :
p_ P S|tuat|on |nterpretat|on frame matching framing assessment
module module

i sub-social level

private
i | goals/values

Fig. 2. Detailed view of the framing-based agent architecture. The main line of reasoning between
perception and action (shown as a shaded arrow) captures both the sub-processes involved and
the temporal order in which they occur.

the perceived frame (a frame-wise interpretation of the currently observed state of
affairs),

the difference model (containing the differences between perceived frame and ac-
tive frame),

the trial frame (the current hypothesis when alternatives to the current frame are
sought for),

and the frame repository, a (suitably organised) frame database used as a hypothesis
space.

The control flow model consists of the following steps:

1.

N

Matching: Compare the current interaction situation (the perceived frame) with the
frame that is currently being used (the active frame).

Assessment: Assess the usability of the current active frame.

Framing decision: If the current frame seems appropriate, retain the active frame
and continue with 6. Else, proceed with 4. to find a more suitable frame.
Re-framing: Search the frame repository for more suitable frames. If candidates are
found, “mock-activate” one of them as a trial frame and go back to 1; else, proceed
with 5.

Adaptation: Iteratively modify frames in the frame repository and continue with 4.
If no candidates for modification can be found, create a new frame on the grounds
of the perceived frame.

6. Enactment: Influence action decisions by applying the active frame. Return to 1.

Figure 2 visualises the steps performed in this reasoning cycle. It introduces a functional
module for each of the above steps and shows how these modules operate on the ac-
tive/perceived/trial frame, difference model and frame repository data structures. Also,
it links the sub-social reasoning (e.g. BDI [13]) level to the INFFrA layer by suggesting
that the agent’s goals and preferences are taken into account in the frame assessment
phase.

InFFrA offers a number of advantages regarding the design of social learning tech-
niques for open learning environments:

1. The frame abstraction combines information about all the relevant aspects of a
certain class of interaction.
It contains information about who is interacting, what they are expected (hot) to do
when they interact, when they will apply this frame and what they need to know
to carry out the frame appropriately. At the same time, it is left to the particular
algorithm designed with InFFrA to specify which of these aspects it will focus on
and how they will be modelled. For example, beliefs can be completely disregarded
in scenarios in which behavioural descriptions are considered sufficient.

2. The framing procedure addresses all issues relevant to the design of interaction
learning algorithms.
It assists the designer in the analysis of

— what knowledge should be captured by the frames and which level of abstrac-
tion should be chosen for them,

— how perception is to be interpreted and matched against existing conceptions
of frames,

— how to define an implementable criterion for retaining or rejecting a frame,

— which operators will be used for retrieving, updating, generating and modifying
frames in the repository,

— how the concrete behaviour of the agent should be influenced by frame acti-
vation (in particular, how local goal-oriented decision-making should be com-
bined with social considerations).

3. It provides a unifying view for various perspectives on social learning at the inter-
action level.
By touching upon classical machine learning issues such as classification, active
learning, exploration vs. exploration, case-based methods, reinforcement and the
use of prior knowledge, INFFrA provides a complete learning view of interaction.
This enables us to make the relationship of specific algorithms to these issues ex-
plicit, if the algorithms have been developed (or analysed) with InFFrA.

In the following section, we will lay out the process of applying the InFFrA frame-
work in the design of a MAL system for opponent classification.

4 AbpHOC

INFFrA has been successfully used to develop the ADaptive Heuristic for Opponent
Classification ADHocC which addresses the problem of learning opponent models in

the presence of large numbers of opponents. This is a highly relevant problem in open
systems, because encounters with particular adversaries are only occasional, so that
the an agent will usually encounter peers it knows nothing of. Therefore, hoping that
opponents will only use a limited set of strategies is the only possibility of learning
anything useful at all, and hence it is only natural to model classes of opponents instead
of individuals.

Remarkably, this issue has been largely overlooked by research on opponent mod-
elling. Yet, this area abounds in methods for learning models of particular individuals’
strategies (cf. [2,5, 3, 6, 15]). Therefore, proposing new OM methods was not an issue
by itself in the development of ADHOC. Instead, the classification method was thought
to be parametrised with some OM method in concrete implementations. In fact, AD-
Hoc does not depend on any particular choice of OM method, as long as the opponent
models fulfil certain criteria.

For our experimental evaluation in an iterated multiagent game-playing scenario,
we combined ADHoC with the well-known US-L* algorithm proposed by Carmel and
Markovitch [4, 3]. This algorithm is based on modelling opponent strategies in terms of
deterministic finite automata (DFA) which can then be used to learn an optimal counter-
strategy, e.g. by using standard Q-learning [18]. In explaining the system, we will first
give an overview of ADHoC, then explain the underlying models and algorithms, and
finally describe how it can be combined with the US-L* algorithm.

4.1 Overview

ADHOC creates and maintains a bounded, dynamically adapted number of opponent
classes C = {ci,...cr} inasociety of agents A = {aq, .. .a,} together with a (crisp)
agent-class membership function m : A — C that denotes which class any known
agent a; pertains to from the perspective of a modelling agent a;. In our application of
ADHOC to multiagent iterated games, each of this classes will consist of (i) a DFA that
represents the strategy of opponents assigned to it (this DFA is learned using the US-
L* algorithm), (ii) a Q-value table that is used for evolving an optimal counter-strategy
against this behaviour and (iii) a set of most recent interactions with this class. This
instance of ADHoc complies with the more general assumptions that have to be made
regarding any OM method that is used — it allows for the derivation of an opponent
model and it makes the use of this model possible in order to achieve optimal behaviour
towards this kind of opponent.

ADHoOC assumes that interaction takes place between only two agents at a time
in discrete encounters e = ((so,to), ... (si,t;)) of length [where s, and t;, are the
actions of a; and a; in each round, respectively. Each pair (s, tj) is associated with a
real-valued utility «; for agent a;°.

The top-level ADHOC algorithm operates on the following inputs:

- an opponent a; that a; is currently interacting with,

2 Any encounter can be interpreted as a fixed length iterated two-player normal-form game [7];
however, the OM method we use in our implementation does not require that «; be a fixed
function that returns the same payoff for every enactment of a joint action (s, tx) (in contrast
to classical game-theoretic models of iterated games).

- the behaviour of both agents in the current encounter e (we assume that ADHOC is
called after the encounter is over) and
- an upper bound & on the maximal size of C.

It maintains and modifies the values of

- the current set of opponent classes C = {c1, ... ¢} (initially C = () and
- the current membership function m : A — C U {_L} (initially undefined (_L) for all
agents).

Thus, assuming that an OM method is available for any ¢ = m(a;) (obtained via the
function OM (c)) which provides a; with methods for optimal action determination,
the agent can use that model to plan its next steps.

In InFFrA terms, each ADHOC class is an interaction frame. In a given encounter,
the modelling agent matches the current sequence of opponent moves with the be-
havioural models of the classes in C (situation interpretation and matching). It then
determines the most appropriate class for the adversary (assessment). In ADHOC, this is
done using a similarity measure S between adversaries and classes. After an encounter,
the agent may have to revise its framing decision: If the current class does not cater for
the current encounter, the class has to be modified (frame adaptation), or a better class
has to be retrieved from C (re-framing). If no adequate alternative is found or frame
adaptation seems inappropriate, a new class has to be generated that matches the cur-
rent encounter. In order to determine its own next action, the agent applies the counter-
strategy learned for this particular opponent model (behaviour generation). Feedback
obtained from the encounter is used to update the hypothesis about the agent’s optimal
strategy towards the current opponent class.

A special property of ADHoOC is that is combines the two types of opponent mod-
elling previously discussed, i.e. the method of learning something about particular op-
ponents versus the method of learning types of behaviours or strategies that are relevant
for more than one adversary. It does so by distinguishing between opponents the agent
is acquainted with and those it encounters for the first time. If an unknown peer is en-
countered, that agent determines the optimal class to be chosen after each move in the
iterated game, possibly revising its choice over and over again. Else, the agent uses its
experience with the peer by simply applying the counter-strategy suggested by the class
that this peer had previously been assigned to.

Next, we will describe how all this is realised in ADHOC in more detail.

4.2 The Heuristic in Detail

Before presenting the top-level heuristic itself, we first have to introduce OPTALT-
CLAss, a function for determining the most suitable class for an opponent after a new
encounter which is employed in several situations in the top-level ADHoc algorithm.
A pseudo-code description of this function is given in algorithm 1.

The OPTALTCLASS procedure proceeds as follows: if C is empty, a new class is
created whose opponent model is consistent with e (function NEwCLASS). Else, a set of
maximally similar classes C,,... is computed, the similarity of which with the behaviour

Algorithm 1 procedure OPTALTCLASS

inputs: Agent a;, Encounter e, Set C, Intk, Intb
outputs: Class ¢
begin
if C # 0 then
{Compute the set of classes that are most similar to a;, at least with similarity b }
Crmaz = {c|S(aj,c) = maxoee S(aj,) A S(aj,c) > b}
if Cmax # 0 then
{Return the ““best’ of the most similar classes}
return arg maxeec,, .. QUALITY(c)
else
{Create a new class, if |C| permits; else, the ““high similarity> condition is dropped}
if |C|] < k then
return NEWCLASS(e)
else
return OPTALTCLASS(C, k, —00)
end if
end if
else
return NEWCLASS(e)
end if
end

of a; must be at least b (we explain below how this threshold is used in the top-level
heuristic).

The algorithm strongly relies on the definition a similarity measure S(q;, ¢) that
reflects how accurate the predictions of ¢ regarding the past behaviour of a; are. In
our prototype implementation, the value of S is computed as the ratio between the
number of encounters with a; correctly predicted by the class and the number of total
encounters with a; (where only entirely correctly predicted action sequences count as
“correct” predictions, i.e. a single mis-predicted move suffices to reject the prediction
of a particular class). As we well see below in the description of the top-level algorithm,
this definition of S does not require entire encounters with g; to be stored (which would
contradict our intuition that less attention should be paid to learning data associated
with individual peers). Instead, the modelling agent can simply keep track of the ratio
of successful predictions by incrementing counters.

If Crnaz 1S empty, a new class has to be generated for a;. However, this is only
possible if the size of C does not exceed &, because, as mentioned before, we require
the set of opponent classes to be bounded in size. If C has already reached its maximal
size, OPTALTCLASS is called with b = —o0, so that the side-condition of S(a;,c) > b
can be dropped if necessary.

If Crnaz 1S NOt empty, i.e. there exist several classes with identical (maximal) simi-
larity, we pick the best class according to the heuristic function QUALITY, which may
use any additional information regarding the reliability or computational cost of classes.

In our implementation, this function is defined as follows:

- #CORRECT (¢) ey #COrr(c)

#ALL(c) #all(c)
_ 4agents(c)
7 ZKknown_agents

+(1—a—ﬁ—7)'cﬁa

QUALITY(c) = «

where

- #ALL(c) is the total number of all predictions of class ¢ in all past games,

- #CORRECT(c) is the total number of correct predictions of class ¢ in all past
games,

- #all(c) is the total number of all predictions of class ¢ in the current encounter,

- #correct(c) is the total number of correct predictions of class ¢ in the current en-
counter,

- #agents(c) = |[{a € Alm(a) = ¢},

- #known_agents be the number of known agents,

- Cosrt(c) is a measure for the size of the model OM (¢) and

-a+pf+y<L

Thus, we consider those classes to be most reliable and efficient that are

1. accurate in past and current predictions (usually, o < 3);
2. that account for a great number of agents (i.e. that have a large “support”);
3. that are small in size, and hence computationally cheap.

It should be noted that the definition of a QUALITY function is not a critical choice in
our implementation of ADHOC, since it is only used to obtain a deterministic method
of optimal class selection in case several classes have exactly the same similarity value
for the opponent in question (a rather unlikely situation). If the similarity measure is
less fine-grained, though, such a “quality” heuristic might significantly influence the
optimal class choice.

Given the OPTALTCLASS function that provides a mechanism to re-classify agents,
we can now present the top-level ADHOC heuristic. Apart from the inputs and outputs
already described in the previous paragraphs, it depends on a number of additional
internal parameters:

- an encounter comprehension flag ecf(c) that is true, whenever the opponent model
of some class ¢ “understands” (i.e. would have correctly predicted) the current en-
counter;

- an “unchanged” counter u(c) that counts the number of past encounters (across
opponents) for which the model for ¢ has remained stable;

- amodel stability threshold 7 that is used to determine very stable classes;

- similarity thresholds ¢, p; and p, that similarities S(a, ¢) are compared against to
determine when an agent needs to be re-classified and which classes it might be
assigned to.

Algorithm 2 ADHoc top-level heuristic

inputs: Agent a;, Encounter e, Integer &
outputs: Set C, Membership function m
begin
¢ «— m(aj)
{The similarity values of all classes are updated depending on their prediction accuracy re-
garding e}
for all c € C do
Sla,) —
end for
if c = L then
{Unknown a; is put into the best sufficiently similar class that understands at least e, if any;
else, a new class is created, if k£ permits}
m(a;) < OPTALTCLASS(C, k,a;,1)
if m(a;) & C then
C —Cu{m(a;)}
end if
ese
{cis incorrect wrt a; or very stable}
if S(aj,c) <6V u(c) > 7then
{Re-Classify a; to a highly similar ¢, if any; else create a new class if k£ permits}
m(a;) < OPTALTCLASS(C, k,aj, p1)
if m(a;) € C then
C—Cu{m(a;)}
end if
else
{The agent is re-classified to the maximally similar (if also very stable) class}
¢ «— OPTALTCLASS(C, k, aj, p2)
if ¢ € CAu(c') > 7then
m(a;) « ¢
end if
end if
OM-LEARN(m(ay), e)
{Model of m(a;) was modified because of e}
if ecf(m(ay)) = false then
{Reset similarities for all non-members of c}
for all o’ € Ado
if m(a’) # cthen
S(a',c) 0
end if
end for
end if
C — C—{d|Vam(a) # '}
end if

After completing an encounter with opponent a ;, the heuristic proceeds as presented
in the pseudo-code description of algorithm 2.

At the beginning, we set the current class ¢ to the value of the membership function
for opponent a;. So in case of encountering a known agent, the modelling agent makes
use of her prior knowledge about a;. Then, we update all classes’ current similarity
values with respect to a; as described above, i.e. by dividing the number of past en-
counters with a; that would have been correctly predicted by class ¢ (correct(a;, c))
by the total number of past encounters with a; (all(a;)). In InFFrA terms, the similarity
function represents the difference model, and thus, ADHOC keeps track of the differ-
ence between all opponents’ behaviours and all frames simultaneously. Therefore, the
assessment phase in the framing procedure simply consists of consulting the similarity
values previously computed. In other words, the complexity of assessing the usability
of a particular frame in an interaction situation is shifted to the situation interpretation
and matching phase.

If a; has just been encountered for the first time, the value of m(q;) is undefined
(this is indicated by the condition ¢ = _L). Quite naturally, a; is put into the best class
that correctly predicts the data in the current encounter e, since the present encounter
is the only available source of information about the behaviour of a;. Since only one
sample e is available for the new agent, setting b = 1 in OPTALTCLASS amounts to
requiring that candidate classes correctly predict e. Note, however, that this condition
will be dropped inside OPTALTCLASS, if necessary (i.e. if no class correctly predicts
the encounter). In that case, that class will be chosen for which QUALITY (¢) is maximal.

Again, taking an InFFrA perspective, this means that a (reasonably general and
cheap) frame that is consistent with current experience is activated. If no such frame
is available, the current encounter data is used to form a new category unless no more
“agent types” can be stored. It should be noted that this step requires the OM method
to be capable of producing a model that is consistent at least with a single observed
encounter.

Next, consider the case in which m(a;) # L, i.e. the case in which the agent has
been classified before. In this case, we have to enter the re-classification routine to
improve the classification of g;, if this is possible. To this end, we choose to assign
a new class to a;, if the similarity between agent a; and its current class c falls below
some threshold ¢ or if the model ¢ has remained stable for a long time (u(c) > 7) (which
implies that it is valuable with respect to predictions about other agents). Also, we
require that candidate classes for this re-classification be highly similar to ¢; (b = p1).
As before, if no such classes exist, OPTALTCLAsSs will generate a new class for a ;, and
if this is not possible, the “high similarity” condition is dropped — we simply have to
classify a; one way or the other.

In the counter-case (high similarity and unstable model), we still attempt to pick a
new category for a;. This time, though, we only consider classes that are very stable,
very similar to a; (p2 > p1), and we ignore classes output by OPTALTCLASS that are
new (by checking “if ¢’ € C...”). The intuition behind this is to merge similar classes
in the long run so as to obtain a minimal C.

After re-classification, we update the class m(q;) by calling its learning algorithm
OM-LEARN and using the current encounter e as a sample. The “problem case” occurs

if e has caused changes to model ¢ because of errors in the predicted behaviour of a;
(ecf(m(a;)) = false), because in this case, the similarity values of m(a;) to all agents
are no more valid. Therefore, we choose to set the similarities of all non-members of ¢
with that class to 0, following the intuition that since ¢ has been modified, we cannot
make any accurate statement about the similarity of other agents with it (remember that
we do not store past encounters for each known agent and are hence unable to re-assess
the values of .S). Finally, we erase all empty classes from C.

To sum up, the heuristic proceeds as follows: it creates new classes for unknown
agents or assigns them to “best matches” classes if creating new ones is not admissible.
After every encounter, the best candidate classes for the currently encountered agent are
those that are able to best predict past encounters with it. At the same time, good can-
didates have to be models that have been reliable in the past and low in computational
cost. Also, classes are merged in the long run if they are very similar and very stable.

With respect to InFFrA, assigning agents to classes and creating new classes de-
fines the re-framing and frame adaptation details. Merging classes and deleting empty
classes, on the other hand, implements a strategy of long-term frame repository man-
agement.

As far as action selection is concerned, a twofold strategy is followed: in the case
of known agents, agent a; simply uses OM (m(a;)) when interacting with agent a,
and the classification procedure is only called after an encounter e has been completed.
If an unknown agent is encountered, however, the most suitable class is chosen for
action selection in each turn using OPTALTCLASS. This reflects the intuition that the
agent puts much more effort into classification in case it interacts with a new adversary,
because it knows very little about that adversary.

In the following section we introduce the scenario we have chosen for an empiri-
cal validation of the heuristic. This section will also present the details of combining
ADHoOC with a concrete OM method for a given application domain.

5 Application to Iterated Multiagent Games

To evaluate ADHOC, we choose the long-studied domain of iterated multiagent games
that captures a number of interesting interaction issues. More specifically, we imple-
mented a simulation system in which agents move on a toroidal grid and play a fixed
number of Iterated Prisoner’s Dilemma [7, 11] games whenever they happen to be in the
same caret with some other agent. The matrix for the single-shot Prisoner’s Dilemma
game in normal form is given in Table 1. If more than two agents meet, every player
plays against every other player where couplings are drawn in random order.

As stated before, we extend the model-based learning method US-L* proposed by
Carmel and Markovitch [4, 3] that is based on learning opponent behaviour in terms of
a DFA by classification capabilities.

To this end, we model the opponent classes used in ADHoC as follows: let

such that A; is a DFA that models the behaviour of opponentsin ¢; and Q; a Q-table [18]
that is used to learn an optimal strategy against A;. The state space of the Q-table is the

a; C D
Qaq
C (3,3)[(0,5)
D 6.0)[(1,1)

Table 1. Prisoner’s Dilemma payoff matrix. Matrix entries (u;, u;) contain the payoff values for
agents a; and a; for a given combination of row/column action choices, respectively. C stands
for each player’s “cooperate” option, D stands for “defect”.

state space of A;, and the Q-value entries are updated using the rewards obtained during
encounters. We also store a set of samples .S; with each ¢;. These are recent fixed-length
sequences of game moves of both players used to train A;. They are collected whenever
the modelling agent plays against class ¢;. It is important to see that they may stem
from games against different opponents, if these opponents pertain to the same class c;,
because this means that we do not need to store samples of several encounters with the
same peer in order to learn the automaton; it suffices to interact with opponents of the
same “kind”. Further, as required by ADHOC, a similarity measure o : A x C — [0;1]
between adversaries and classes is maintained, as well as a membership function m :
A — C that describes which opponent pertains to which class.

Again, looking at InFFrA, this choice of opponent classes implies a specific design
of interaction frames. We can easily describe how the concept of interaction frames can
be mapped to the opponent classes:

— trajectories — these are given by the behavioural models of the DFA, describing
the behaviour of the opponent depending on the behaviour of the modelling agent
(which is not restricted by the trajectory model);

— roles & relationships — each frame/class is defined in terms of two roles, where
one (that of the modelling agent) is always fixed; the m-function defines the set of
agents that can fulfil the “role” captured by a particular opponent class, while the S-
function keeps track of similarities between agents and these roles across different
opponent classes.

— contexts — preconditions, frame activation conditions and frame deactivation con-
ditions are trivial: agents can in theory apply any frame in any situation, provided
that they are in the same caret with an opponent; framing terminates after a fixed
number of rounds has been played. The post-conditions of encounters are stored in
terms of reward expectations as represented by the Q-table.

— beliefs — these are implicit to the architecture: both agents know their action choices
(capabilities), both know the game has a fixed length, both know that the other’s
choices matter.

The training samples and Q-table values constitute the private attributes associated
with a frame. They capture experienced rewards and a (bounded-memory) history of
experiences with every frame, respectively.

To recall how the ADHOC classification fits into the framing view of social reason-
ing with this particular OM method, we need to look at the individual aspects of framing
once more. Thereby, we have to distinguish between (i) the case in which the current

opponent a; has been encountered before and (ii) the case in which we are confronted
with an unknown adversary.
Let us first look at the case in which ¢; has been encountered before:

1. Situation interpretation: The agent records the current interaction sequence (which
becomes the perceived frame) and stores it in .S, (4). It also updates the entries in
the Q-table according to recent payoffs.

2. Frame matching: Similarity values are updated for all frames with respect to a;.
As observed before, this is a complex variant of matching that moves some of the
complexity associated with frame assessment to the matching phase.

3. Frame assessment and re-framing: These occur only after an encounter, since the

classification procedure is only called after an encounter. As a consequence, the
framing decision can only have effects on future encounters with the same agent.
The framing decision itself depends on whether the current sequence of opponent
moves is understood by the DFA in m(a;) or not. After calling the OM learning
procedure, the opponent model currently used for a; may have been modified, i.e. a
frame adaptation has taken place.
Unfortunately, the US-L* does not allow for incremental modifications to the DFA.
This means that if a sample challenges the current DFA, the state set of the DFA
and its transitions are completely overthrown — the algorithm is not capable of mak-
ing “minor” modifications to the previous DFA. Therefore, none of the difference
models represented implicitly by the similarity function S is adequate after such a
modification to the DFA. Thus, it is very risky to modify the model of a class.

4. Trial instantiation: Instead of testing different hypotheses and “mock-activating”
them as suggested by the general InFFrA view, ADHOC performs a “greedy” search
for an adequate frame by using OPTALTCLASS. Hence, this is a very simple im-
plementation of the trial instantiation phase.

5. Frame enactment: This is straightforward — the InFFrA component uses the Q-
table associated with the frame/opponent class m(a;) for action selection and uses
the classical Boltzmann strategy for exploration. Since there is no other level of
reasoning to compete with, the agent can directly apply the choices of the InFFrA
layer. A notable speciality of the US-L*-ADHoc variant of InFFrA is that the DFA
impose no restrictions on the action selection mode of the modelling agent itself, it
is free to do anything that will help optimise its utility.

In the case of unknown opponents, frame assessment and re-framing is implemented as
in the previous case. The differences lie in matching and in making framing decisions,
which occurs after each round of the encounter (and not only after the entire encounter).
After each round, the modelling agent activates the most similar class with respect to
the current sequence of moves and uses this class for enactment decisions (according to
the respective Q-table).

6 Experimental Results

In the first series of experiments we conducted, one ADHOC agent played against a
population of opponents with fixed strategies chosen from the following pool of strate-
gies:

T
Classes +
Enawn Agents

200 F

150 £ |

100 F

-
+
R R e e

0 500 1000 1500 2000 2500 000 3600 4000 4500 BO00

Simulation Rounds

Fig. 3. Number of agent classes an ADHOC agent creates over time in contrast to the total number
of known (fixed-strategy) opponents (which is increased by 40 in rounds 150, 300 and 450). As
can be seen, the number of identified classes converges to the actual (four) strategies.

— “ALL C” (always cooperate),

— “ALL D” (always defect),

— “TIT FOR TAT” (cooperate in the first round; then play whatever the opponent
played in the previous round) and

— “TIT FOR TWO TATS” (cooperate initially; then, cooperate iff opponent has co-
operated in the two most recent moves).

Using these simple strategies served as a starting point to verify whether the ADHoOC
agent was capable of performing the task in principle. If ADHOC proved able to group
a steadily increasing number of opponents into these four classes and to learn optimal
strategies against them, this would prove that ADHOC can do the job. An important
advantage of using these simple and well-studied strategies was that it is easy to verify
whether the ADHOC agent is playing optimally, since optimal counter-strategies can be
analytically derived.

To obtain an adequate and fair performance measure for the classification heuristic,
we compared the performance of the ADHOC agent to that of an agent who learns one
model for every opponent it encounters (“One model per opponent”) and to that of an
agent who learns a single model for all opponents (“Single model”).

The results of these simulations are shown in figures 3 and 4. Plots were averaged
over 100 simulations on a 10 x 10-grid. Parameter settings where: § = 0.3, 7 = 15,
p1 = 0.6, p2 = 0.9, k = 80 and [= 10. 6 samples where stored for each class in order
to learn opponent automata. They prove that the agent is indeed capable of identifying
the existing classes, and that convergence to a set of opponent class is robust against
entry of new agents into the system.

Reward per 100 Games

“ AdHoc Agent -
One Model per Opponent -------
N Single M‘odel ,,,,,,,,

L L L L
[5000 10000 15000 20000 25000 30000 35000
Played PD Games

Fig.4. Comparison of cumulative rewards between ADHOC agent, an agent that maintains one
model for each opponent and an agent that has only a single model for all opponents in the same
setting as above.

In terms of scalability, this is a very important result, because it means that ADHoOC
agents are capable of evolving a suitable set of opponent classes regardless of the size
of the agent population, as long as the number of strategies employed by adversaries is
limited (and in most applications, this will be reasonable to assume).

A look at performance results with respect to utility reveals even more impressive
results. It shows that the ADHOC agent not only does better than the “single model”
agent (which is quite natural), but that it also significantly outperforms an allegedly
“unboundedly rational” agent that is capable of constructing a new opponent model for
each adversary! Even though the unboundedly rational agent’s performance is steadily
increasing, it remains below that of the ADHOC agent even after 40000 encounters.

This sheds new light on the issues discussed in section 2, because it means that
designing learning algorithms in a less “individual-focused” way can even speed-up
the progress in learning. In technical terms, the reason for this is easily found. The
speed-up is caused by the fact that the ADHOC agent obtains much more learning data
for every class model it maintains by forcing more than one agent into that model,
thus being able to learn a better strategy against every class within a shorter period of
time. This illustrates an aspect of learning in open systems that we might call “social
complexity reduction”: the ability to adapt to adversaries quickly by virtue of creating
stereotypes. If opponents can be assumed to have something in common (their strategy),
learning whatever is common among them can be achieved faster if they are not granted
individuality.

Another issue that deserves analysis is, of course, the appropriate choice of the up-
per bound £ for the number of possible opponent classes. Figure 5 shows a comparison
between ADHOC agents that use values 10, 20, 40 and 80 for &, respectively, in terms
of both number of opponent classes maintained and average reward per encounter.

35

30

P N N
@ S} a

Number of Opponent Classes

=
o

I I I
0 1000 2000 3000 4000 5000 6000
Simulations

33

Reward per 100 Games

25 L

I I I
0 2000 4000 6000 8000 10000
Number of Played PD Games

Fig. 5. Comparison between ADHoOC agents using different & values. The upper plot shows the
number of opponent classes the agents maintain, while the plot below shows the average reward
per encounter. The number of opponent classes remains stable after circa 5000 rounds.

Even though there is not much difference between the time needed to converge to
the optimal number of opponent classes, there seem to be huge differences with respect
to payoff performance. More specifically, although a choice of £ = 40 instead of £ = 80
seems to have little or no impact on performance, values of 10 and 20 are certainly too
small.

In order to interpret this result, we have to consider two different aspects of the
US-L*-ADHoOC system:

— The more models are maintained, the more exploration will be carried out per
model in order to learn an optimal strategy against it.

— The fewer models we are allowed to construct, the more “erroneous” will these
models be in predicting the behaviour of adversaries that pertain to them.

The first aspect is simply due to the fact that as new classes are generated, their Q-tables
have to be initialised and it takes a number of Q-value updates until a reasonably good
counter-strategy is learned. On the other hand, a small upper bound on the number of
classes forces us to use models that do not predict their member’s behaviours correctly,
at least until a large amount of training data has been gathered.

This contrasts our previous observation about the potential of creating stereotypes.
Although it is certainly true that we have to trade off these two aspects against each
other (both extremely high and extremely low values for k£ seem to be inappropriate),
our results here are in favour of large values for k. This suggests that allowing some di-
versity during learning seems to be crucial to achieve effective learning and interaction.

The second series of experiments involved simulations with societies that consist
entirely of ADHOC agents. Here, unfortunately, ADHoOC agents fail to evolve any useful
strategy, they exhibit random behaviour throughout. The reason for this is that they have
fairly random initial action selection distributions (when Q tables are not filled yet and
automata un-settled). Hence, no agent can strategically adapt to the strategies of others
(since they do not have a strategy, either).

A slight modification to the OM method, however, suffices to produce better results.
We simply add the following rule to the decision-making procedure:

If the automaton of a class c is constantly modified during » consecutive games,
we play some fixed strategy X for 7 games; then we return to the strategy
suggested by OM (c).

The intuition behind this rule can be re-phrased as follows: if an agent discovers that
her opponent is not pursuing any discernible strategy whatsoever, it takes the initiative
to come up with a reasonable strategy itself. In other words, she tries to become “learn-
able” herself in the hope that an adaptive opponent will develop some strategy that can
be learned in turn.

An important design issue is which strategy X to use in practice, and we investi-
gated four different methods:

1. Use TIT FOR TAT on the grounds that it is stable and efficient in the IPD domain.
2. Use a fixed strategy that is obtained by generating an arbitrary DFA.
3. Pick that strategy from the pool of known opponent strategies C that

() has the highest QUALITY value,

(b) provides the largest payoff.

The results of these simulations are shown in figure 6. Quite clearly, the choice of TIT
FOR TAT outperforms the other methods. More precisely, the ADHoC agents who have
already met before will converge to the (C, C) joint action, once at least one of them
has played the fixed strategy for a while (and has hence become comprehensible to
its opponent). Of course, newly encountered opponents may still appear to be behav-
ing randomly, so that sub-optimal play with those agents cannot be avoided in many
situations.

The superiority of TIT FOR TAT in these experiments confirms the long-lived repu-
tation of this strategy [1], because it is known to be a very safe strategy against a variety
of counter-strategies. In terms of deriving as generic method of choosing such a strategy

38 T T T T T T T

36

34+

32

/i
30 b g

Reward per 100 Games

28 /]

Ay Tit For Tat

Maximum Quality --------
H\gh‘esl Payoff |

24 ! ! ! ! !
0 2000 4000 6000 8000 10000 12000 14000

Interactions (IPD Games)

Fig. 6. Comparison of agent performance in “ADHocC vs. ADHoc” simulations and different
selection methods for the strategy chosen if the opponent exhibits random behaviour.

that does not depend on knowledge about the particular interaction problem, this is cer-
tainly not an optimal solution and is surely an issue that deserves further investigation.

Still, our experiments prove that ADHOC is at least capable of “trying out” new
strategies without jeopardising long-term performance, although this is certainly not
optimal in decision-theoretic terms.

7 Conclusion

Open systems are becoming increasingly important in real-world applications, and pose
new problems for multiagent learning methods. In this paper, we have suggested a novel
way of looking at the problem of learning how to interact effectively in such systems
that is based on the principle of looking less at the behaviour of individual co-actors
and concentrating more on learning activities that are concerned with recurring patterns
of interactions that are relevant regardless of the particular opponent. We presented a
framework for designing and analysing such learning algorithms based on the socio-
logical terms of frames and framing called InFFrA and applied it to the design of a
heuristic for opponent classification.

A practical implementation of this heuristic in the context of a multiagent IPD sce-
nario was used to conduct extensive empirical studies which proved the adequacy of our
approach. This system called US-L*-ADHoc not only constitutes a first application of
INFFrA, it also extends an existing opponent modelling method by the capability of
classification, rendering this opponent modelling method usable for systems with more
than just a few agents. For a particular domain of application, US-L*-ADHoOC success-
fully addresses the problems of behavioural diversity, agent heterogeneity and agent
fluctuation. It does so by allowing for different types of opponents and deriving optimal

strategies for acting towards these opponents, while at the same time coercing data of
different opponents into the same model whenever possible, so that the learning efforts
pay even if particular agents are never encountered again.

The work presented here is only a first step toward the development of learning
algorithms for open multiagent systems, and many issues remain to be resolved, out
of which we can mention but a few that are directly related to our own research. One
of these is the use of communication: in our experiments, the main reason for not be-
ing able to evolve cooperative interaction patterns in the “AbHoc vs. ADHOC” setting
(i.e. the interesting case) unless TIT FOR TAT is used as a “fallback” strategy is the util-
ity pressure which causes agents to use ALL D whenever in doubt (after all, it is the best
strategy if we know nothing about the other’s strategy). So if agents were able to indi-
cate what strategy they are going to play without endangering their utility performance
every time, we expect the possibility for cooperation to emerge to be much bigger. An-
other interesting issue to explore is the application of US-L*-ADHOC to more realistic
multiagent domains. Finally, a theoretical framework to analyse the trade-off between
learning models of individuals vs. learning models of recurring behaviours would surely
contribute to a principled development of learning algorithms for open systems.

References

=

R. Axelrod. The evolution of cooperation. Basic Books, New York, NY, 1984.

H. Bui, D. Kieronska, and S. Venkatesh. Learning other agents’ preferences in multiagent
negotiation. In Proceedings of the Thirteenth National Conference on Artificial Intelligence,
pages 114—119, Menlo Park, CA, 1996. AAAI Press.

3. D. Carmel and S. Markovitch. Learning and using opponent models in adversary search.
Technical Report 9609, Technion, 1996.

4. D. Carmel and S. Markovitch. Learning models of intelligent agents. In Thirteenth National
Conference on Artificial Intelligence, pages 62—67, Menlo Park, CA, 1996. AAAI Press/MIT
Press.

5. C. Claus and C. Boutilier. The dynamics of reinforcement learning in cooperative multiagent
systems. In Collected Papers from the AAAI-97 Workshop on Multiagent Learning, pages
13-18. AAAI, 1997.

6. Y. Freund, M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, and R. E. Shapire. Efficient Al-
gorithms for Learning to Play Repeated Games Against Computationally Bounded Adver-
saries. In 36th Annual Symposium on Foundations of Computer Science (FOCS’95), pages
332-343, Los Alamitos, CA, 1995. IEEE Computer Society Press.

7. D. Fudenberg and J. Tirole. Game Theory. The MIT Press, Cambridge, MA, 1991.

8. L. Gasser. Social conceptions of knowledge and action: DAI foundations and open systems
semantics. Artificial Intelligence, 47:107—-138, 1991.

9. E. Goffman. Frame Analysis: An Essay on the Organisation of Experience. Harper and Row,
New York, NY, 1974. Reprinted 1990 by Northeastern University Press.

10. C. Hewitt. Open information sytems semantics for distributed artificial intelligence. Artificial
Intelligence, 47:79-106, 1991.

11. R.D. Luce and H. Raiffa. Games and Decisions. John Wiley & Sons, New York, NY, 1957.

12. T. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

13. A. S. Rao and M. P. Georgeff. BDI agents: From theory to practice. In Proceedings of the

First International Conference on Multi-Agent Systems (ICMAS-95), pages 312—319, 1995.

N

14.

15.

16.

17.

18.
19.

M. Rovatsos. Interaction frames for artificial agents. Technical Report Research Report FKI-
244-01, Al/Cognition Group, Department of Informatics, Technical University of Munich,
2001.

M. Rovatsos and J. Lind. Hierarchical common-sense interaction learning. In E. H. Durfee,
editor, Proceedings of the Fifth International Conference on Multi-Agent Systems (ICMAS-
00), Boston, MA, 2000. IEEE Press.

M. Rovatsos, G. WeiR, and M. Wolf. An Approach to the Analysis and Design of Multiagent
Systems based on Interaction Frames. In M. Gini, T. Ishida, C. Castelfranchi, and W. L.
Johnson, editors, Proceedings of the First International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS’02), Bologna, Italy, 2002. ACM Press.

J. M. Vidal and E. H. Durfee. Agents learning about agents: A framework and analysis.
In Collected papers from AAAI-97 workshop on Multiagent Learning, pages 71-76. AAAI,
1997.

C. Watkins and P. Dayan. Q-learning. Machine Learning, 8:279—-292, 1992.

G. Weil, editor. Multiagent Systems. A Modern Approach to Distributed Artificial Intelli-
gence. The MIT Press, Cambridge, MA, 1999.

