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Abstract. Although several approaches to the semantics of agent communica-
tion have been proposed, none of them is really suitable for dealing with agent
autonomy, which is a decisive property of artificial agents. This paper introduces
an observation-based approach to the semantics of agent communication, which
combines benefits of the two most influential traditional approaches to agent com-
munication semantics, namely thementalistic(agent-centric) and theobjectivist
(i.e., commitment- or protocol-oriented) approach. Our model makes use of the
fact that the most general meaning of agent utterances lays in their expectable
consequencesin terms of agent actions, and that communications result from hid-
den but nevertheless rational and to some extent reliable agent intentions. In this
work, we present a formal framework which enables the empirical derivation of
communication meanings from the observation of rational agent utterances, and
introduce thereby a probabilistic and utility-oriented perspective of social com-
mitments.
Keywords:Agent Communication Languages, Open Multiagent Systems, Com-
putational Autonomy, Stochastic Processes, Artificial Sociality

1 Introduction

Currently, two major approaches to the meaning of agent communication in a broader
sense, covering both traditional sentence-level semantics and pragmatics, exist. The
mentalisticapproach (e.g. [5, 6]) specifies the meaning of utterances by means of a de-
scription of the mental states of the respective agents (i.e., their beliefs and intentions,
and thus indirectly their behavior), while the more recent commitment-basedobjectivist
approaches (e.g. [3, 14], also calledsocial semantics) try to determine communication
from an external point of view, focussing on public rules and inter-agent contracts. The
former approach has some well-known shortcomings, which eventually led to the de-
velopment of the latter: Especially inopenmultiagent systems, agents appear more or
less as black boxes, which makes it in general impossible to impose and verify a se-
mantics described in terms of agent cognition. They could only be put into practice
making simplifying but unrealistic assumptions to ensure mental homogeneity among
the agents, for example that the interacting agents were benevolent and sincere, and it
neglects the social context of utterances. Objectivist semantics in contrast is fully verifi-
able, it achieves a big deal of complexity reduction through limiting itself to a small set
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of normative rules, and has therefore been a significant step ahead. But it oversimpli-
fies social processes, and it doesn’t have a concept of meaning indefiniteness, rational
attitude (but see [4] for an objectivist approach to modeling the “intuitive” meaning of
speech acts) and agent malevolence. In contrast to these approaches, we propose a so-
calledempirical semanticswhich is based on the assumption that the meaning of agent
utterances lies basically in theirconsequencesin terms ofexpectations, i.e.,expectable
future agent actions and other events which can be continuously learned and adapted
from observed agent actions - a view first introduced in [8, 9]. These consequences
are represented as probabilisticSocial Interaction Structures, which are a variant of
Expectation Networks[8, 10, 11], and they are learned from ongoing communication
processes by asemantics observerthat can be either an agent participating in the com-
munication himself, or an external agent (e.g., a special middle agent, or a supervision
facility [12] of the system designer or application users). This learning task puts two
general assumptions about agent communication into practice: i) observed agent inter-
actions within a certain social context are likely to reoccur in similar situations in the
future (empirical stationarity assumption), and ii) agents act individually but more or
less rationally towards their communicated goals within alimited sphere of communica-
tion (limiting their commitments’ trustability and the predictability of other behavioral
characteristics). Therefore, the semantics observer deals with the “intentional stances”
[2] of otherwise opaque agents towards their communicated goals and believes (learned
empirically from observed utterances) rather than with real “cognitive agents”. From
these assumptions, we retrieve the following replacements for traditional semantical
concepts:

– Verification of semantics according to normative rules as in social semantics→
Verification regarding a learned empirical model of observed agent communication
processes

– Assumption of a certain mental agent architecture and cognition→ revisable, prob-
abilistic expectation of bounded rational behavior (the so calledrational hulls of
communications)

– Social commitments and agent sincerity→ revisable, probabilistic expectation of
the limited maintenance of communicated goals by the uttering agents

For lack of space, and in order to provide a general, flexible approach, we do not make
use of a concrete ACL in this work. Instead, we propose the dynamic semantics of so-
calledElementary Communication Acts(ECAs) which obtain their concrete meaning
not from some pre-defined speech-act typology as usual, but from their usage context.
The theoretical assumption behind ECAs is that all kinds of speech acts can be trans-
lated into one or more demands to act in pragmatical conformance with a declared
course of events (a certain probability distribution of events in the future), in which
each ECA can be contextualized with companion social structures resulting from other
ECAs to clarify and get accepted the demand (e.g. sanctions). E.g., an assertive act is the
request to communicate in conformance with the expressed belief from now on, a com-
mand is a request to perform the described actions in order to reach the declared future
world state, accompanied with norms and the threatening with sanctions, and the utter-
ance of a performative sentence is also an assertive act which demands to communicate
as if the proposed (social) consequences this act “makes true” were/would become true



in fact. ECAs are represented as pointers to demanded and otherwise rather unlikely
world states within some assumably shared world knowledge represented as a so-called
Expectation Network. Thus, the abstract a priory semantics of ECAs (in contrast to
their full meaning which is derived empirically at run-time) can be considered to be the
low-level replacement of both traditional a priory sentence semantics (concerned with
the propositional content of messages, based on an assumably shared ontology with a
semantics given as truth-conditions) and speech act types. In contrast, the “full seman-
tics” of an actually uttered ECA is the probability distribution of expected future events
triggered by this utterance.
The remainder of this paper is organized as follows: The next section introduces our
novel approach to ACL semantics and pragmatics. Section 3 definesExpectation Net-
worksas the data structure used to describe agent communication semantics empiri-
cally. Section 4 provides a formal learning and adaptation framework for social (i.e.,
communication) structures, and finally, section 5 draws some conclusions regarding
current limitations of our approach and future work.

2 A novel approach to the modeling of communication

In this section, we provide an informal overview of our approaches calledEmpirical
Agent Communication Semantics(or "empirical semantics" for short) [8, 9, 16, 10] and
Empirical-Rational Agent Communication Semantics[9, 11] in order to motivate the
formal framework presented in the following sections.
In its most general sense, thesemantics1 of agent communication describes the effect a
single communication has in the context of / on its environment. Both the context and
the effect can include / affect every changeable aspect of the uttering agents’ environ-
ment and the agent itself, e.g. agent cognition, other communications, social structures,
the “physical” environment, the mental dispositions of the uttering and other agents.
Having knowledge about the semantics of agent communication has several obvious
advantages, both for the agents (active and passive) and the designer of the agent-based
application. Since for truly autonomous black-box agents, every kind of meaningful in-
teraction can be expressed in terms of symbolic, rejectable communicationsonly [1, 8]
(in contrast to the direct influencing of agents through physical actions or commands),
agent communication semantics coverseveryaspect of socially relevant behavior, from
social mechanism design (e.g. auctions) and game theory to large artificial societies.

2.1 Demands and issues

Traditionally, the comprehensive semantics mentioned above is assumed to have two
dimensions that need to be covered by a comprehensive approach to the semantics of
agent communication: First, thesentence level, which is the aspect of meaning that is
traditionally subject of linguistical semantics. This aspect of meaning is contextualized

1 If not stated otherwise, we use the term "semantics" in the computer scientific sense, not as
a linguistic term. Linguists would talk about "meaning" instead, covering both linguistic sen-
tence semantics and pragmatics.



with an environmental description in the form of anassumably(not necessarily actu-
ally) sharedontology. In addition, a calculus to describe objects and events within the
environment the respective utterance refers to has to be provided, for example predicate
logic and temporal modalities. The second dimension of meaning is itspragmatics, i.e.,
the actual use and effect of utterances in social encounters. Contemporary approaches
to agent communication language (ACL) semantics go pretty far in their claimed area
of coverage, since they attach either far-reaching mentalistic or social-normative as-
sumptions to single ACL sentences. This leads to a mixture of traditional sentence-
level semantics and pragmatics. Even though also sentence-level semantics largely de-
pends from use-dependant contextual information, required e.g. for the resolution of
anaphora, most linguists carefully prevent the mixing of (socio-)pragmatic issues and
sentence-level semantics. In contrast, most approaches to ACL semantics are in fact
"pragsemantics" since they include elements which traditionally belong to pragmatics,
mostly borrowed from speech-act theory and socio-normative theories. In principle,
there is nothing wrong with such an hybrid approach (at least for the case of formal
languages, where things are less complicated than with human languages), and our ap-
proach follows this direction too. But there are several problems with the mentioned
mentalistic and objectivist approaches to put "pragsemantics" into action, as discussed
now.
Following [9], we have identified the following demands and issues for ACL semantics,
for which we aim to provide a basic approach:

Expressibility Communications are basically (possibly false) demands directed to other
agents to bring about or to act in accordance with a certain projected (respectively
asserted) world state (respectively point of view), in which a “world state” is a ex-
pected course of events or a proposed view of history. Thus, the means in order to
bring these states about, possible reactions from other agents (including bystanders)
and other aspects and implications of the initial and resulting states need to be mod-
eled. In our opinion, neither the notation of social commitment nor the specification
of mental agent properties are adequate order to do so. The former not, because it
essentially reduces interaction meaning to contracting protocol semantics (leaving
the term “commitment” itself rather under-specified [15]), the latter not also, be-
cause communication meaning external to the agents’ minds can be modeled only
indirectly.

Verifiability Whereas most approaches to ACL semantics use this term in order to
check if normatively imposed regulations are observed (i.e., if agents think and be-
have “correctly”), we use the term “verifiability” in a model-theoretical sense to ex-
press that a model of agent communication corresponds with observable processes
of agent interactions, in which this model is to its largest part learned from obser-
vations itself, and only to a small, abstract part imposed normatively.

Flexibility and support for meaning indifference, emergence and changeCurrent ap-
proaches to ACL semantics work if the set of speech act types is known a-priori and
each locution denotes a fixed and known illocutionary act. Tackling these issues,
Empirical-Rational Semantics restricts itself to a very small predefined core part,
decomposes all kinds of communication acts into a single type of elementary act,
and determines much of the actual semantics empirically at run-time.



Consideration of heterogeneous agent architectures and agent insincerityIf the se-
mantics of utterances is given in terms of mental agent states, it can either not be
validated (from an agent-external point of view, e.g. of the responding agent, or of
the system designer), or requires the restriction of agent autonomy (e.g. demand-
ing sincerity). The latter also affects some “objectivist” approaches, if these require
norm fulfilling, or make additional mentalistic assumptions (e.g. “whole-hearted
satisfaction” [17]).

Consideration of agent intentionality and rational attitude Communication has an
unique property: It constructs a social situation, which is inherently consistent and
reasonable, even if it opposes the “real world” outside communication and the cog-
nitive beliefs of the agents: 1) Communicated information is supposed to be con-
sistent with information previously communicated by the same agent, or this agent
at least justifies his change of mind, 2) the agent defends and asserts his utterances
by means of argumentation or other rational means like rewards and sanctions, and
3) information not expressed explicitly can be deduced from information commu-
nicated before and background knowledge. If, for example, in an open auction on
the internet some agenta asserts “I will deliver the goods if you win the auction.”,
an observer does not need to believe him. But the observer believes that the further
communication ofa complies with this assertion. To make communication work,
this belief is to some extent independent from reasoning about the true motives
“within the agents mind”. Agenta is supposed to act at least for some time in a
rational manner in accordance with the social image that heprojectsfor himself by
means of communication (e.g.,a sanctions the denial of his proposal, rewards its
acceptance etc). The information about such (bounded-)rational attitude is implic-
itly associated with each communication of a self-interested agent, and is thus part
of communication semantics. Commitment-based approaches largely neglect this
kind of intentionality, moving ACL semantics towards contract making instead.

Interaction process generalization and social structuresSocial structures like norms
strongly influence the semantics of communications. If for example an agent ap-
points another agent to be group leader, an explicit acceptance by other agents is not
necessary (in contrast to the joint acceptance of a commitment as in commitment-
based semantics) if the appointing agent already has the necessary power granted by
existing social structures. Empirical-Rational semantics supports such pre-structuring,
and the extrapolation of past interaction experiences (if, e.g., the appointing agent
has been successful in the past, it becomes more likely he also will with his new
appointment, even before this proposal has been accepted explicitly).

Support for agent generalizations and mass communicationCurrent approaches to
ACL semantics are intended primarily for dyadic situations. Some of them allow
for message broadcasts, but they lack a concept for unification and weighting of
multiple messages or, respectively, responses, to reflect a (possibly inconsistent)
common point of view of multiple agents, or to enable collaboration in joint com-
municative action. It is hardly imaginable, how thousands or even millions of agents
shall contribute to, e.g., the Semantic Web, if social agents are unable to generalize
upon their communications by means of statistical evaluation. Whereas our cur-
rent formal framework still focusses on 1:1 communication, and does not yet sup-



port generalization, it allows for the stochastic representation of communication
processes, providing a basis for the future inclusion of the described features.

2.2 Empirical-Rational Semantics

The three central assumptions underlying our approach are that 1) the meaning of com-
munications lies primarily in their expectable, observable consequences (a view which
was for artificial agency first formulated in [8]), that 2) these consequences can be
learned from the observation and as extrapolations of past communication processes
(without too much reasoning about what is “inside the agents heads”, which signifi-
cantly reduces the complexity of the learning task), and that 3) the meaning of com-
munications might evolve during the interaction processes. Please refer to [1, 8, 9] for
theoretical justifications of these assumptions. The basic requirements in order to put
these assumptions into practice are the presence of asemantics observerwhich de-
rives communication semantics from observations, and a knowledge medium which
represents the assumably shared semantics among the agents as interrelated stochastic
expectations (Expectation Network).
In our communication model (which does not follow speech act theory), a single com-
munication can be seen as a request to act in conformance with a desired state declared
by its utterance, in which this state is given as a probability distribution of future events,
and the meaning of the utterance is the probability distribution of expected events sub-
sequent to the utterance. If one agent e.g. utters “Close the door” to another agent, the
desired world state is the door being closed by the addressed agent, and the meaning
of that utterance is if and how the addressed agent works towards this state, possi-
bly together with side-effect as the sanctioning in case of non-compliance. As another
example, if an agent performs the act “You are the group leader now”, then this act de-
mands that other agents act as if the addressed agent would perform like a group leader
from now on. In a strict sense, even this performative act will become successful only a
posteriori, but if the nominating agent has been assigned the necessary social power in
the past, its success can be derived immediately from past successes empirically.
In contrast to non-communicative events, an utterance has no (significant) direct impact
on the physical environment. Instead, its physical consequences are achieved socially
and indirectly, and, most important, the addressee is free to deny the communicated
proposition. Since an utterance is always explicitly produced by a self-interested agent
to influence the addressee which is not already convinced from the necessity of the
proposal, communicated content will very likely not “believed” immediately, but needs
to be accompanied with communicated reasons given to the addressee to increase the
probability of an acceptance of the communicated content. This can be done either
explicitly by previous or subsequent communications (especiallyreciprocally: “If you
comply, I’ll comply too”), or implicitly by means of generalizations from past events
(e.g., trust) or given social structures. The whole of the expectations which are trig-
gered by a communication in the context of the preceding communication process we
call its rational hull. The rational hull specifies the rational social relationships which
steer the acceptance or denial of communicated content according the rational attitude
the agents exhibit. Typically, a rational hull is initially very indefinite and becomes in-
creasingly definite in the course of interaction, provided that the agents work towards



Expect ∈ [0; 1]

Agent → agent_1 | . . . | agent_n

PhysicalAction → move_object | touch_agent | . . .

Action → ECA(Agent ,Projection)

| do(Agent ,PhysicalAction)

ActionPattern → Action | ?

Projections → (Conditions,GoalStates)

Conditions → SimplePath

GoalStates → SimplePath

SimplePath → Action SimplePath | ε

Table 1.

A grammar for event nodes of ENs, generating the languageM (the language of concrete actions,
starting withAction).

mutual understanding. The utterances themselves are modeled as pointers pointing to
the desired/proposed states within the Expectation Network (thus denoting subjective
expectation directed to other agents in contrast to the objective expectations maintained
by the semantics observer).

3 Expectation Networks

Expectation Networks (ENs) are the graphical data structures we want to use for the sto-
chastic modeling of Social Interaction Structures, which in turn represent the semantics
of utterances in the form of EN branches. The formal EN definition we present in this
work is an improved yet simplified version of the definition presented in [10], itself
based on the definition of Expectation Networks provided in [8].
The central assumption that is made in ENs is that observed events like agent actions
(especially symbolic agent messages) may be categorized as expected continuations of
other observed event sequences. An edge leading from eventm to eventm′ is thought
to reflect the probability ofm andm′ being correlated from the observer’s point of view
(the descriptive power of ENs is thus similar to Markov processes, but in contrast edges
in ENs relate events, not states).

As forM, this is a formal language that defines the events used for labeling nodes
in expectation networks. Its syntax is given by the grammar in table 1. Agent actions
observed in the system can be either “physical” actions of the format(a, ac) wherea is
the executing agent, andac is an domain-dependent symbol used for a physical action,
or symbolic elementary communication actsECA(a, c) sent froma to another agent
with contentc. We do not talk about “utterances” or “messages” here, because a single
utterance might need to be decomposed into multiple ECAs. The symbols used in the
Agent andPhysicalAction rules might be domain-dependent symbols the existence of



which we take for granted. For convenience,agent(eca) shall retrieve the acting agent
of an ECAeca.
In addition to normal node labels, we use the symbol(.EN ) to denote the root node
of an specific EN. The special symbol? marks pseudo-nodes which are just graphical
abbreviations for the so-calledcompleteEN which models the uniform distribution of
all possible combinations and sequences of observable events (see below). A “node”
labeled with? thus stands for a branch with infinite depth. The contentc of a non-
physical action is given by typeProjections. The meaning ofProjections will be
described later.
Syntactically, expectation networks are here represented as lists of edges(m, p, n)
wherem andn are actions, andp is a transition probability (expectability) from m to n.
We use functionsin : V → 2C , out : V → 2C , source : C → V andtarget : C → V
which return the ingoing and outgoing edges of a node and the source and target node
of an edge, respectively.children : V → 2V returns the set of children of a node, with
children(v) = ∅ in casev is a leaf.≺ : V × V → {true, false} returnstrue iff there
is a path leading from the first argument node to the second and the event associated
with the second node is expected to occur after the event of the first node.C is the set
of all edges,V the set of all nodes in the EN. Edges denote correlations in observed
communication sequences. Each cognitive edge is associated with an expectability (re-
turned byExpect : C → [0; 1]) which reflects the probability oftarget(e) occurring
after source(e) in the same communicative context (i.e. in spatial proximity, between
the same agents, etc.).
Sometimes we denote a pathp in an EN leading fromv0 ∈ V to vn ∈ V as concate-
nations of message labels (ECAs)Label(v0) t ... t Label(vn). Thet are sometimes
omitted for shortness.|p| := n. Node : SimplePathEN → V results in the last node
of a certain path given as a string of labels. Nodes or corresponding messages along
a pathp will be denoted aspi. EN (M) is the set of all possible expectation networks
overM.

Definition 1. An Expectation Networkis a structure

EN = (V,C,M,Label ,Expect) ∈ EN (M)

where

– V with |V | > 1 is the set of nodes,
– C ⊆ V × V are the edges ofEN . (V, C) is a tree calledexpectation tree. (V, C)

shall have a unique root node called.EN ∈ V which corresponds to the first ever
observed action2. The following condition should hold:

∀v
∑

e∈out(v)

Expect(e) = 1

– M is theaction language.As defined in table 1, actions can be symbolic (ECA(...))
or physical actions (do(...)). While we take the existence and the meaning of the

2 Of course, there are semantics observers imaginable which maintain multiple ENs to model
different social systems, states of knowledge or environmental domains at the same time.



latter in terms of resulting observer expectations as granted and domain-depended,
the former will be described in detail later.

– Label : V → M is theaction labelfunction for nodes, with∀v ∈ V : ∀e, f ∈
children(v) :
¬unify(Label(e),Label(f)) (whereunify shall betrue iff its arguments are syn-
tactically unifiable. Cf. [10] for the use of variables in ENs),

– Expect : C → [0; 1] returns the edges’ expectabilities. For convenience, we define
Expect(label|path) = Expect(in(v)) if Node(path t label) = v.

Paths starting with. are calledstates(of communication)3

4 Social Interaction Structures

Based on the definition of ENs, we can now defineSocial Interaction Structuresas a
special kind of communication structures. Social Interaction Structures capture the reg-
ularities of externally observed communication processes and other assumably publicly
observable events (the latter can be considered as being communicated “by doing”, or
as projected information). The basic ideas behind this concept are that 1) agent social-
ity emerges from agent communication, and that 2) communications form a so-called
social systemwhich is closed in the sense that, to some degree, communication regu-
larities come into being from communications themselves [1], such that the semantics
observer does not need to have to “look inside the agents’ heads” to derive these struc-
tures. Because of that, communication structures can meaningfully be learned from
observations. Nevertheless, this learning process needs to be continuously repeated to
adapt the EN to new perceptions (since open systems with truly autonomous agents
with unknown life spans have no final state), and does always imply the possibility of
failure of its prediction task (yet the term “expectation”). The Social Interaction Struc-
tures (respectively the probabilistic distribution it represents, as, e.g., an EN branch)
following an utterance (the node denoting the ECA which is part of this utterance, to be
precise)4 is called thesemanticsof this utterance.

4.1 Social Interaction Systems

In [10], we’ve introducedCommunication Systemsas a universal means for the de-
scription of social dynamics of multiagent systems. The two main purposes of a Com-
munication System are i) to capture the social expectations (represented as an EN) in
the current state of a multiagent system under observation, and ii) to capture changes
to these expectations. Whereas the EN models the meaning of communicative action
sequences at a certain time (i.e., their expected, generalized continuations in a certain
context of previous events), the communication system models the way the EN is build

3 Actually, two different paths can have the same semantics in terms of their expected continua-
tions, a fact which could be used to reduce the size of the EN by making them directed graphs
with more than one path leading to a node instead of trees as in this work.

4 Usually, this context is build up from previous events, but it would also be possible that utter-
ances become contextualized (e.g., more specific) bysucceedingutterances.



up, and, if necessary, adapted according to new observations of events. We introduce
now Social Interaction Systems(SIS) as a concrete kind of general Communication
Systems. The difference between general Communication Systems and Social Interac-
tion Systems is that the latter come with a concrete EN learning algorithm, whereas for
general Communication Systems we just demand unspecifically that the expectations
within learned ENs shall reflect the expectation of the semantics observer regarding the
future course of events [10], not specifically taking into account agent rationality and
social commitment. The term “interaction system” comes from social systems theory
[1], where it denotes the most basic kind of communication (=social) system.
As seen in table 1, we also allow purely physical, non-symbolic events to be contained,
like agent actions, but without projections. So the EN of an SIS comprises physical
states of the domain too, as far as these are visible for the semantics observer, and of
course physical events projected by ECAs.
The SIS maintained by the semantics observer is also theassumablyshared world
knowledge the agents use as the common ground for their uttered ECAs. Social In-
teraction Systems are thus two dimensional, in the sense that they do not only contain
expectations regarding actual agent behavior including utterances (first dimension), but
also descriptions of the imaginative behavior which the uttering agents tries to bring
about or demand, i.e., which they expect other agents to do.

Definition 2. A Social Interaction Systemat timet is a structure

SISt = (M, f, $t, ρ)

where

– M is the formal language used for agent actions (according to table 1),
– f : EN (M) ×M → EN (M) is theexpectations update functionthat transforms

any expectation networkEN to a new network upon experience of an actionm ∈
M. f(⊥,m) returns the so-calledinitial EN, transformed by the observation ofm.
This initial EN can be used for the pre-structuring of the social system using given
e.g. social norms or other a-priori knowledge which can not be learned usingf . Any
ENs resulting from an application off are calledSocial Interaction Structures.
As a non-incremental variant we definef : M+ → EN (M) to be
f(m0 tm1... tmt) = f(...(f(f(⊥,m0),m1)...),mt),

– $t = m0 tm1... tmt ∈ M∗ is the list of all actions observed until time t. The
subindexes of themi impose a linear order on the actions corresponding to the
times they have been observed5,

– ρ ∈ N is a time greater of equal the expected life time of the SIS. We require this
to calculate the so-calledspheres of communication(see below). If the life time is
unknown, we setρ = ∞.

We refer to events and EN nodes aspast, currentor futuredepending on their timely
position (or the timely position of their corresponding node, respectively) before, at or

5 For simplicity, we assume a discrete time scale witht ∈ N, and that no pair of actions can be
performed at the same time, and that theexpectedaction time corresponds with the depth of
the respective node.



after t. We refer toENt = f($t) as thecurrent EN from the semantics observer’s
point of view, if the semantics observer has observed exactly the sequencem0m1...mt

of events so far.
The intuition behind our definition ofSISt is that a social interaction system can be
characterized by how it would update an existing expectation network upon newly ob-
served actionsm ∈ M. The EN withinSISt can thus be computed through the se-
quential application of the structures update functionf for each action within$, start-
ing with a given expectation network which models the observers’ a-priori knowledge.
$t−1 is called thecontext(or precondition) of the action observed at timet.
To simplify the following formalism, we demand that an EN ought to be implicitly com-
plete, i.e., to containall possible paths, representing all possible event sequences (thus
the EN within a social interaction system is always infinite and represents all possible
world states, even extremely unlikely ones). If the semantics observer has no a-priori
knowledge about a certain branch, we assume this branch to represent uniform distrib-
ution and thus a very low probability for every future decision alternative (1

|M | ), if the
action language is not trivially small.
Note that any part of an EN of an SIS does describe exactly one time period, i.e., each
node within the respective EN corresponds to exactly one moment on the time scale
in the past or the future of observation or prediction, respectively, whereas this is not
necessarily true for ENs in general. For simplicity, and to express the definiteness of
the past, we will define the update functionf such that the a-posteriori expectabilities
of past events (i.e., observations) become 1 (admittedly leading to problems if the past
is unknown or contested, or we would like to allow contested assertive ECAsaboutthe
past). There shall be exactly one pathpc in the current EN leading from start node.ent

leading to a nodepct such that|pc| = t and∀i, 0 ≤ i ≤ t : Label(pci) = mi. The node
pci and the ECAmi are calledcorresponding.
The semanticsof $t (i.e. mt within context$t−1) is defined as the probability dis-
tribution ∆ENt,$t represented by the branch starting with the node withinENt that
corresponds to$t:

∆ENt,$t(w
′) =

∏

i,1≤i≤|w′|
Expect(w′i|$tw

′
1...w

′
i−1)

∑

m∈M+

∏

i,1≤i≤|m|
Expect(mi|$tm1...mi−1)

for all w′ :⇔ $t t w′ ∈ M +. Thew′i denote single event labels alongw′.

4.2 Projections

As defined in table 1, ECAs consist of two parts: The uttering agent, and the ECA
content (projections). Each projection is a set of EN node pairs which are derived from
the following two syntactical elements (cf. table 1)6.

– Conditionschooses, using an EN path (without expectabilities), a possibly infinite
set of EN states which have to become reality in order to make the uttering agent

6 Future version of our framework might allow the utterance of whole ENs as projections, in
order to freely project new expectabilities or even introduce novel event types not found in the
current EN.



start to act towards its uttered goal (e.g. in “If I deliver the goods, you must pay me
the money”). As shown in table 1, conditions are given as a linear list of node labels.
This path must match with paths in the current EN, either absolutely beginning with
., or starting at nodes after the node which corresponds to the ECA. The end nodes
of all matches in EN are called thecondition nodesof the ECA projections. So,
if the node list is empty, the only condition node is the node corresponding to the
ECA. The path matching is always successful, since in our model, an EN implicitly
contains all possible paths, although with a probability near zero for most of them.

– GoalStateschooses, using an EN path (without expectabilities), the (possibly infi-
nite) set of states of the expectation network the uttering agent is expected to strive
for. The utteredGoalStatespath must match with a set of paths within the EN such
that the last node of each match is a node of an EN branch that has a condition node
from Conditionsas its root. Both in Conditions and GoalStates paths, wildcards “?”
for single actions are allowed.
For the purpose of this paper, we demand that the projections either refer to fu-
ture interactions or be semantically inactive (i.e., they already failed or have been
successful). Theoretically, we could also imagine projections regarding the past. In
this case the respective ECA would express that the uttering agent will likely try to
change the way other agents communicate about the past, but we do not consider
this difficult and rather unusual case here for simplicity.
Note also that projected goal states possibly describe actions the uttering agent an-
nounces to performhimself, not just explicit demands directed to other agents. In
this case, the rational hull for this goal consists of behavior which likely increases
the support from other agents in order to make the goal state come true.

In the context of an EN, every projection implicitly refers to previous or future pro-
jections which announcereasons or positive or negativesanctionsthe uttering agent
would impose on the ECA receiver in case of a positive or negative response to the
ECA. So, in our model, sanctions and argumentative reasons are projections also, in
order to support the realization of other projections (of course, this can be continued
recursively, e.g. projections in order to support sanctions), and learned from previous
processes as anticipations of future reasons and sanctions7. The projection of accompa-
nying reasons and sanctions is an inevitable part of every elementary communication
act, since among self-interested agents it would be unreasonable to make propositions
without providing any reciprocative utility to the receiver, with the exception of implicit
reasons and sanctions given as pre-existing social structures social structures like social
power, laws or other norms (which we do not consider in this work). Such supporting
projections can be either unspecified, to be specified later, or already be specified by
means of previous events. Of course, like any other kinds of projections, they need not
to be “honest”, or put into action, or be effective.
Because the projections set can represent arbitrary probability distributions, it is possi-
ble for multiple ECAs to express disjunctive statements like “I want you to do either
a or b”, if a andb are inconsistent events (i.e., events which cannot occur both in the

7 In order to model explicit argumentation or social reasoning systems as special cases of Social
Interaction Systems, we would additionally need to provide an explicit logical interpretation
of ENs, which our framework does not yet accomplishes.



same context). Since consistent ECAs uttered by the same agent are interpreted as con-
junctively related, and ECAs with redundant projections are allowed (which increases
its impact of these projections on the social structures), one can project arbitrary prob-
ability distributions using multiple ECAs. The following functions returns the set of
projections of a single ECAECA(condition, goal) ∈ M with pathscondition ∈
Conditions andgoal ∈ GoalStates:

projectionsEN (M) : M → V × V
projections(V,C,M,Label,E)(ECA(ce1...cen, ge1...gem)) =
{(vn, vm) : {(vi, vi+1) : 1 ≤ i ≤ n− 1} ⊆ C
∧ unify(Label(vi), cei)
∧ {(vi, vi+1) : n + 1 ≤ i ≤ n + m− 1} ⊆ C
∧ unify(Label(vi), gei)
∧ vn ≺ vn+m ∧ unify(Label(vn), cen)
∧ unify(Label(vn+m), gem)}

unify(?, l) andunify(l, ?) shall always be true. For convenience, we writeGoal((c, g)) =
g andCondition((c, g)) = c.

4.3 Rational hulls

Per se, a projection has no power to make its goal states become true. In fact, projec-
tions don’t have to be rational at all. But we consider it to be rational that the uttering
agent will act towards the projected eventsat least for some significant amount of time
("allegedly rational", so to say)8. This time span and the events within, starting directly
after the projecting utterance event, are calledsphere of communication(cf. figure 1).
Theoretically, each ECA could have its own sphere of communication. For simplicity,
in this work we assume that the sphere of communication of any ECAeca is simply
ρ − time(eca), where the first operand is the expected time of the last observed utter-
ance within the SIS, and the second is the utterance time of the projecting ECA. This
setting is assumable realistic for small and simple interaction systems, where the inter-
acting agents likely stick to their opinions and desires for the whole and usually short
duration of the SIS (like auctions). For other domains we would have to determine the
spheres of communicationa posteriorifrom empirical observations.
The actions the uttering agents is expected to perform within the respective sphere of
communication in order to make his projections come true is called therational hull of
the ECA. Thus, the determination of the rational hulls of observed ECAs constitutes a
crucial part of the determination of ACL semantics. The rational hull can be seen as the
actual pragmatics and meaning “behind” the more normative and idealistic concept of
social commitments.

We assume the manifestation of the following attitudes by means of ECAswithin
the respective spheres of communicationand contextualized by means of other ECAs:

– Information of other agents about desired states of communication.This informa-
tion is given as projections as described above.

8 This time span of projection trustability can be very short though - think ofjoke questions.
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Fig. 1. An EN with projections and a sphere of communication

– Support of other communicated goals.The supportive functionality communication
has regarding other communications is defined by the rational hulls of the supported
elementary communication acts, which will become implicitly more expectable too
if supporting rational hulls increase their own expectabilities.

– Manifestation of understanding.In case the agents “understand” each other, ECAs
cannot express contradiction to the fact that other ECAs pursue the two previous
intentions (i.e., Agent 1 does not need to believe Agent 2 is right, but she needs to
believe at least that Agent 1wantsto be right in a specific case). We do not consider
misunderstanding in this work.

Capturing these intentions, and given the set of projections for each ECAeca uttered
by an agenta, we calculate the rational hull of a certain ECA using the following two
principles.

4.3.1 Bounded rational choiceAfter utteringeca, an agenta is expected to choose
an action policy such that, within the respective sphere of communication, his actions
maximize the probability of the projected state(-s). Letp ∈ projections(eca,ENt) be
a projection. Then, considered thatp would be a useful state for the uttering agent to
be in, the rule of rational choice proposes that for every nodevd with agent(vd) = a
along the pathvt...p leading from the current nodevt to p, Expect(in(vd)) = 1 for
the incoming edge ofvd, and that the expectabilities of the reminding outgoing edges
of the predecessor ofvd are reduced to 0 appropriately (if no other goals have to be
considered). To reduce the complexity of applying this general rule on the possibly



infinite projections set, and to observe the bounds of observer rationality, we propose
the following constraints:

– Expectabilities will be adapted within the respective sphere of communication of
eca only, even if the goal statep is located beyond this sphere.

– Expectabilities will be adapted only for parts of the current EN with a significant
evidence regarding actions performed by other agents. Since we represent miss-
ing knowledge as uniform distribution, we put this rule into practice by demanding
that at decision nodes of other agents (i.e., nodes with children representing ac-
tions of agents other than the agent which utteredeca) theexpectabilities entropy
entropyEN : V → R should be below some given limit.
entropyEN (v) =∑

v′∈children(v)−Expect(in(v′))log2Expect(in(v′))
– If multiple elements inprojections are identical despite their context, and the paths

leading to these projections overlap, priority is given to those projections with a
higher cumulative expectability. Finding the right paths is a markovian multiple-
decision problem from the perspective of the uttering agenta (and thus from the
perspective of the semantics observer which models the behavior ofa also), which
in general cannot simply be solved by pairwise comparison of paths leading from
the current node to the competitive projections regarding their maximum expected
utilities, if projections(eca,ENt) = {p1, ..., pn} contains more than two ele-
ments.

– The projections of previously uttered ECAs have to be maintained, so the rule of
rational choice needs to do a weighting assessment of previously calculated rational
hulls instead of simply outdating them.

We use the following functionuEN (M) : M× V → [0; 1] to calculate theutility of an
arbitrary nodev regarding its supporting function for a specific elementary communi-
cation acteca.

uEN (eca, v) =





0 if ∀i, 1 ≤ i ≤ n :
¬v ≺ Goal(pi) ∨ ¬Condition(pi) ≺ v

0 if entropyen(v) > κ, or else:

1 if ∃i : v = Goal(pi)
max

j,1≤j≤c
uEN (eca, vcj)

if agent(Label(vcj)) = agent(eca)
max

j,1≤j≤c
Expect(in(vcj))uEN (eca, vcj)

otherwise

with {p1, ..., pn} = projections(eca), {vc1, ..., vcc} = children(v), andκ being
some predefined entropy maximum.
max (...) could be replaced with(

∑
j,1≤j≤c ...)/c to prefer a high number of paths

leading to a goal instead of the highest expectability for one goal node.



Figure 1 shows an EN modeling the future of some communication process.ECAX

is an utterance which encodesGoalY . This goal itself stands for several (seemingly)
desired states of the EN (yellow nodes). Since within the so-calledsphere of communi-
cationof ECAX (see below) it is expected that the uttering agent rationally strives for
these states, certain EN paths leading to these states become more likely (bold edges).
Such behavior paths need to be (more or less) rational in terms of their expected utility
(e.g. in comparison with competing goal states), and they need to reflect experiences
from analogous agent behavior in the past.

4.3.2 Empirical stationarity assumption The following describes the "purely" em-
pirical aspects of our approach. If we would use the previous rule (ostensible rationality)
as the only EN updating mechanism, we would face at least three problems: 1) Predict-
ing agent actions according to the rule of rational choice requires some given evidence
about subsequent actions of other agents. In case this previous evidence is missing,
the rule of rational choice would just “convert” uniform distribution into unform dis-
tribution. Therefore, we have to provide an initial probability distribution the rule can
be applied on9. 2) the set of projections for a single ECA might be infinite. Most of
the expectabilities along the paths leading from the current node to these EN branches
sum up to very low probabilities for the respective projection. Thus, a pre-selection
of likely paths will be necessary. And most important 3), the rule of rational choice
does not consider individual behavioral characteristics like (initially opaque) goal pref-
erences of the agents, but treats all projections uniformly. Goal hierarchies need thus
to be obtained from past agent practice as well as individual strategies towards these
projections. For these reasons, we combine the application of the rule of rational choice
with the assumption of some stationarity of past event trajectories, i.e., the assumption
that previously observed action sequences repeat themselves in the future in a similar
context. We use this assumption to retrieve a probability distribution the rule of rational
choice can be applied on and weighted with subsequently.
In order to learn EN stationarity from previous observations, we follow the so-called
variable-memory approachto higher-order Markov chains usingProbabilistic Suffix
Automata(PSA) introduced forL-predictableobservation sequences [7]. This approach
efficiently models Markov chains of order L (i.e., with a model memory size of L), al-
lowing for rich stochastical models of observed sequences. The applicability of this ap-
proach to our scenario is based on the heuristical assumption that many Social Interac-
tion Systems areshort-memory systems, which allow the empirical prediction of social
behavior from a relatively short preceding event sequence (assumedly pre-structuring
using social norms , constraints from rational choice etc is done properly). The main
characteristic of the PSA-based approach is its straightforward learning method, with
expressiveness and prediction capabilities comparable with the more commonHidden
Markov Models[7].
For the calculation of the PSA from a set of sample agent action sequences, we use an
algorithm introduced in [7], originally coming fromPAC-learning, in a slightly mod-

9 This probability distribution must also cover projected events and assign them a (however low)
probability even if these events are beyond the spheres of communication, because otherwise
it would be impossible to calculate the rational hull.



ified version. It constructs a so-calledPrediction Suffix Tree(PST) (sometimes called
Probabilistic Suffix Tree) from the samples, which is roughly equivalent to the target
PSA, but easier to build up. Its only disadvantage in comparison to the corresponding
full PSA is that the time complexity for the predicting task is higher approximately by
the factorL.

Definition 3. A Prediction Suffix Treewith memory sizeL over the language of concrete
agent actionsM is a structurePSTL(M ) = (V,C,Label , γ) where

– (V, C) defines a tree graph consisting of a set of nodesV, |V | > 0 and a set of
edgesC ⊆ V × V ,

– Label : V → M + returns for a node its label (with maximum lengthL),
– γ : V → {(d1, ..., d|M |) : di ∈ R} returns for each node a vector which defines

the probability distribution associated with this node. Each elementγσ(v) of the
resulting vector corresponds to the conditional probability of the particular message
σ in M .∑

σ∈M γσ(v) = 1 should hold - nevertheless, vector elements with a very low
probability are omitted.

A PST is able to predict the probability of sequences using a tree traversal up to the root,
asγ returns for a specific message its conditional occurrence probability given that the
largestsuffixν, |ν| ≤ L, of the message sequence observed before matches with the
label of this node.L should depend from the available memory resources, the length of
the samples and the expected spheres of communication.
In order to build up the PST from the empirical observations, we need to define the con-
ditional empirical probability within a set of sample action sequences (where actions
are either ECA utterances or physical actions). As input we us the setsamplesSISt

=
{m0m1...,mt} ∪ {r1

1...r
l1
1 , ..., r1

n...rln
n }, wherem0m1..., mt is the sequence of events

observed so far forSISt until time t, and the reminder of this set consists of additional
samples to improve prediction accuracy. Ther1

i rli
i are optional; we can omit these ad-

ditional samples and learn the PSA from the single sequencem0m1..., mt only. But as
a rule of thumb, the lengths of the sample sequences should be at least polynomial in
L[7]. If an a-priori EN is given for pre-structuring, theri could be obtained from a fre-
quency sampling of sequences from this EN, which is straightforward and thus omitted
here. For lack of space, we also omit the detailed PST-learning algorithm, which can be
found in [7].
The probability for the PST-generation of an event sequencem = m1...mn ∈ (M )n is

PPST (m) =
n∏

i=1

γmi(v
i−1)

wherev0 is the (unlabeled) root node of the PST and for1 ≤ i ≤ n−1 vi is the deepest
node reachable by a tree traversal corresponding to a prefix ofmimi−1...m1, starting
at the root node.
From the probability distribution obtained fromPPST , we derive the corresponding EN
using the functionδ : M + → EN (M):

δ(m0m1...,mt) = (V, C,M,Label, Expect)



 

Fig. 2. Iterative version of the algorithm (outline)

with
V = {.} ∪ {vp : p ∈ paths},
Label = {vp1...pn 7→ pn : p1 t ... t pn ∈ paths},
C = {(., vp) : |p| = 1, vp ∈ V }
∪ {(vp1...pn−1 , vp1...pn) : vp1...pn−1 ∈ V ∧ vp1...pn ∈ V },
Expect =

{in(vp1...pn) 7→ PPST (p1...pn)
PPST (p1...pn−1)

, vp1...pn ∈ V }, and

paths = {p : p ∈ M + ∧ PPST (p) > Pmin}, wherePmin is a predefined lower bound
for significant expectabilities.

4.3.3 Rationality-biased empirics Putting together the rule of rational choice and
the assumption of empirical stationarity, we gain the following (non-iterative) definition
for the Social Interaction Structures update functionf of an SIS. Figure 2 outlines the
iterative counterpart not described here.

f(m0m1...mt) = %(ENstat , .ENstat )

with ENstat =
(VENstat , CENstat ,M, LabelENstat , ExpectENstat ) such that
VENstat = {vm0 , ..., vmt} ∪ Vδ,
CENstat =
Cδ ∪ {(.ENstat = vm0 , vm1), ..., (vmt−1 , vmt), (vmt , .δ)}
and∀i, 1 ≤ i ≤ t :
Expect(in(vmi)) = 1, ∀i, 0 ≤ i ≤ t : Label(vmi) = mi, with
(Vδ, Cδ,M, Labelδ, Expectδ) = δ(m0m1...mt).

Expect(in(vmi)) = 1 reflects the definiteness of already observed events.



Above,% : EN (M)×SimplePath → EN (M) applies the results of the calculation of
rational hulls to the entire EN resulting from the PST by means of a recursive top-down
tree traversal which is limited by the maximum search depth maxdepth (alternatively,
we could apply a entropy-based search limitation criterion similar to the criterion used
in 4.3.1).

%((V, C, M, Label, Expect), path) =
{

(V, C, M, Label, Expect) if |path| > maxdepth

(V, C, M, Label, Expect|children(v)|) otherwise

usingv = Node(path), ∆U (v) = {(vj , u(Label(v), vj)) :
vj ∈ V, agent(Label(vj)) = agent(Label(v))},

∀vj ∈ V : Expect0(in(vj)) =



Expect(in(vj)) + ∆U (v)[vj ]
2

if Time(vj) < ρ ∧ agent(Label(vj)) = agent(Label(v))
Expect(in(vj)) otherwise

and

∀n, 1 ≤ n ≤ |children(v)| :
Expectn :⇔ (V, C, M, Label, Expectn) =
%((V, C,M, Label, Expectn−1),
path t Label(children(v)n)).

Here,∆U (v) assigns every nodevj its utility regarding the ECALabel(v), if the acting
agent is the same forv andvj . Expect0(in(vj)) assigns the node its new expectability
(equally weighted with its previous expectability, which might be already be utility
biased from another ECA), andTime(vj) < ρ limits the application to nodes within
the sphere of communication.∆U (v)[vj ] denotes the utility for reachingv assigned to
vj .

5 Conclusions

We have introduced an approach to the semantics of agent communication which com-
bines features from traditional mentalistic and objectivist approaches. Being a novel
and very basic proposal, several important things remain to do:
- ECAs and ENs do not explicitly model logical propositions and their relationships
(e.g., in an EN, a low probability for uttering “no” does not automatically increase the
probability for uttering “yes”, as it should, and one can express logical statements only
indirectly by stating their pragmatical consequences in terms of events).
- To be of practical use with common ACLs, ECAs also need to be obtainable from
conventional speech acts, which requires a translation of speech act types into ECA
patterns within the EN (and vice versa, in order to learn new speech act types from
emergent ENs).
- Related to the previous issue, the explicit emergence of communication symbols as



“shortcuts” for combinations of ECA patterns is not yet supported.
- Meta-communication (communication about communication) is not yet supported.
- The EN learning algorithm does not yet make use of generalizable behavior patterns
thatdifferentagents have in common (like agent roles).

This work has been supported by DFG (German National Science Foundation) under
contracts no. BR609/11-2 and MA759/4-2.
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