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Abstract

This chapter focusses on the intersection of neural and evolutionary learning and shows basic

aspects of and current approaches to the combination of these two learning paradigms. Ad-

vantages and di�culties of such a combination are described. Approaches from both the �eld

of arti�cial intelligence and the neurosciences are surveyed. A number of related works as well

as extensive references to further literature are presented.
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1. INTRODUCTION

Learning, de�ned as any change in the knowledge base of a system that enables the system

to improve its performance in the future, is a many{faceted phenomenon. One can distinguish

several paradigms for learning, two of which are the neural and the evolutionary paradigm:

according to the former, learning consists of modifying the connection weights of a neural

or neural{type network of simple computational elements; according to the latter, learning

consists of applying the evolutionary operators mutation, recombination and selection to in-

dividuals that represent speci�c points in a search space. This chapter focusses, from the

viewpoints of arti�cial intelligence and the neurosciences, on the intersection of neural and

evolutionary learning.

In the �eld of arti�cial intelligence neural and evolutionary learning have been investigated

separately from and independently of each other until very recently. Neural learning is one of

the central areas of research on arti�cial neural networks; the major goal is the development of

learning procedures that work e�ciently even for complex real{world tasks, and much progress

has been made in achieving this goal in the last decade. Table 1 provides an overview of basic

neural learning approaches; for details see (Hinton, 1989; Weiss, 1990).

Against that, evolutionary learning is typically considered in the context of research on evo-

lutionary search. The most common formal techniques of evolutionary search are Rechenberg's

evolution strategy (Rechenberg, 1973; Schwefel, 1977) and, most intensively studied, Holland's

NEURAL LEARNING

SUPERVISED LEARNING REINFORCEMENT LEARNING UNSUPERVISED LEARNING

i. e. learning with full

training feedback specifying

the desired actions

i. e. learning with partial

training feedback specifying

only the quality of the

performed actions

i. e. learning without

any training feedback

e. g. backpropagation

(Rumelhart et. al, 1986),

Boltzmann learning

(Hinton & Sejnowski, 1986)

e. g. associative reward{penalty

learning (Barto & Anandan, 1985),

the reinforcement{comparison

algorithms (Sutton, 1984, 1985),

the REINFORCE algorithms

(Williams, 1987)

e. g. feature maps

(Kohonen, 1988),

adaptive resonance theory

(Grossberg, 1988),

Linsker{type learning

(Linsker, 1988)

TABLE 1: An overview of basic neural learning approaches in arti�cial intelligence.
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1. Initialize a population of structures P

2. Evaluate the structures in P

3. while the desired structure is not contained in P do

3.1. create a new population Q by applying the

evolutionary operators to the structures in P

3.2. P  � Q

3.3. Evaluate the structures in P

TABLE 2: The evolutionary search cycle. Evolutionary search works with populations of struc-

tures, where each structure (genotype) codes for a speci�c solution (phenotype) in the search

space. A structure is evaluated by assigning a measure (�tness value) to the solution it codes

for. The initialization is usually done at random. Evolution proceeds by selecting structures

according to their �tness values and by randomly changing (mutating) and recombining (cross-

ing) the structures with some (low) speci�ed probability. The search stops when a structure is

found that codes for a solution whose �tness value exceeds some prede�ned threshold.

genetic algorithm (Dorigo, 1990; Goldberg, 1989; Holland, 1975). Although these techniques

di�er with respect to several implementational details, conceptually they are nearly identical

(Ho�meister & B�ack, 1990). Table 2 shows how evolutionary search realized by them works in

principle. Up to now two types of evolutionary machine learning systems have been proposed:

Holland's classi�er systems (Booker, Goldberg & Holland, 1989; Holland, 1986; Holland & Re-

itman, 1978; Wilson & Goldberg, 1989) and Smith' LS systems (Smith, 1980, 1983; Scha�er,

1984, 1985); a learning system that combines features of classi�er systems and LS systems

was presented by Grefenstette (1988a). Roughly, these are parallel, message{passing, rule{

based systems that use the genetic algorithm for discovering new rules. The primary di�erence

between the classi�er systems and the LS systems is that the former apply the evolutionary

operators to individual rules whereas the latter apply them to entire rule sets (see (de Jong,

1988; Gre�enstette, 1988b) for a more detailed comparison).

The idea of combining neural and evolutionary learning has received much attention in

the last few years and now there are a number of approaches to such a combination. These

approaches as well as related works from arti�cial intelligence and other �elds are surveyed in

section 2.

In the neurosciences learning is investigated at di�erent levels of brain organization, includ-

ing the molecular level, the level of individual synapses and neurons, and the level of whole

groups of neurons (e.g., Changeux & Konoshi, 1986; Neuroscience Research, 1986; Trends in
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Neurosciences, 1988). Several neuroscienti�c theories have been proposed that combine as-

pects of neural and evolutionary learning and, in particular, postulate that selective processes

operating at these brain levels in somatic time (i.e. during the life time of an individual) are

fundamental to neural learning. These theories | the evolutionary selection circuits model,

the theories of selective stabilization of synapses and pre{representations, and the theory of

neuronal group selection (neural Darwinism) | are described in section 3.

2. HYBRID APPROACHES IN ARTIFICIAL INTELLIGENCE

2.1. Evolutionary Design of Arti�cial Neural Networks

Experimental data reported in the literature show that there is a strong connection be-

tween the structure (size and connectivity) and the function of an arti�cial neural network

(ANN). This connection concerns aspects of both learning and representation. In particular,

the structure greatly a�ects the performance in learning the desired function, that means, the

speed and accuracy (including criteria like noise resistance and generalization ability) with

which this function is learned, as well as the comprehensibility of the representation of the

learned function, that means, the transparency or opaqueness of this function's representation.

However, apart from some vague statements, nothing is known about the principles and laws

underlying this structure{function connection.

1

There is no method for a priori specifying an

appropriate network structure, neither in view of the learning performance nor in view of the

representational comprehensibility, and this causes the network design to be the weak point

of the process of developing an ANN. (\Network design remains something like a black art",

as was radically formulated in (Miller, Todd & Hedge, 1989).) Therefore it is not surprising

that there is a rapidly growing interest in the automated design of network structure (e.g. see

(Barna, 1990)).

2.1.1. Improving Learning Performance and Representational Comprehensibility

There are several approaches to the automated design of ANNs which employ the technique

of evolutionary search, typically in the form of Holland's genetic algorithm, in order to �nd an

appropriate network structure. Following the above considerations, these approaches can be

classi�ed as follows.

Approaches to the automated network design which deal with the aspect of learning

performance were described in (Hancock, 1990; Harp, Samad & Guha, 1989a, 1989b; Lehar

& Weaver, 1987; Merrill & Port, 1988b; Miller, Todd & Hedge 89; Nol�, Elman & Parisi,

1990; Schi�mann, 1989; Schi�mann & Mecklenburg, 1990; Schi�mann, Joost & Werner, 1990;
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Wilson, 1990). The intention underlying these approaches was to improve the speed and ac-

curacy achieved by conventional learning procedures for ANNs. Examples of the application

tasks used by these approaches are the XOR problem (Harp, Samad & Guha, 1989a, 1989b;

Miller, Todd & Hedge, 1989), T{C discrimination (Merrill & Port, 1988b), Boolean multiplexer

(Wilson, 1990), digit/face recognition (Harp, Samad & Guha, 1989a, 1989b; Hancock, 1990),

and food searching in a simple environment (Nol�, Elman & Parisi, 1990). The experimental

results were very encouraging; in particular, the evolved networks showed an improved learn-

ing behavior in comparison with the initial ones (esp. see the approaches of Harp et. al. and

Miller et. al.). It is interesting that evolutionary search often produced appropriate structures

which are quite di�erent from those (e.g. layered feedforward or simple recurrent structures)

typically used in the ANN �eld.

An approach to automated network design which deals with the aspect of representational

comprehensibility was depicted in (Dolan & Dyer, 1987a, 1987b). This work focusses on the

question of how symbolic schemata might be implemented at the subsybmbolic, neural{like

(connectionist) level. Thereby Dolan and Dyer took the view that networks learning by con-

structing opaque representations \may yield little to our understanding of human cognitive

information processing" (1987b, p. 123) and that \in order to learn large symbolic structures

of the type that people use, speci�c architectures will be required" (1987a, p. 8). (A similar

argumentation is contained in (Feldman, 1988).) The primary intention for applying the evolu-

tionary search technique was to demonstrate that there is a plausible evolutionary path along

which network structures suitable for symbol processing can evolve. The experiments per-

formed by Dolan and Dyer indicated that the low{structured networks were less robust (hence

more 
exible) as regards mutational changes than the high{structured ones (also see (Gierer,

1989)); particularly, these experiments showed an evolutionary tendency towards complex,

hierarchically organized structures. (Another hybrid approach which may be viewed under

the aspect of representational comprehensibility was presented in (de Garis, 1990a); see sec-

tion 2.2. Another work carried out at the symbolic{subsymbolic intersection was described in

(M�uhlenbein & Kindermann, 1989).)

2.1.2. Genotypic Representation of Neural Networks

Employing the evolutionary search technique requires that the network structures be en-

coded in speci�c representations or \genotypes" upon which the evolutionary operators mu-

tation and recombination (crossing over) can act. One can distinguish between two types of

representational schemes used in the approaches mentioned above. First, the low{level scheme

according to which the structure is speci�ed more or less directly by the network connec-

tivity (e. g., Miller, Todd & Hedge, 1989; Schi�mann & Mecklenburg, 1990). Second, the

high{level scheme according to which the structure is speci�ed in a relatively abstract way by

network parameters like the number of layers or units (total or within a layer), the degree and
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the types of connectivity between and within the layers, the size of the units' receptive �elds,

and so forth (e. g., Dolan & Dyer, 1987a, 1987b; Harp, Samad & Guha, 1989a, 1989b; Lehar

& Weaver, 1987; Merrill & Port, 1988b).

2

The �gures 2 and 3 give an example of these repre-

sentational schemes. (Other genotypes that have been used code for \non{structural network

properties" like the magnitude of the units' thresholds or the magnitude and decay rate of the

connection{ or layer{speci�c learning coe�cient.) As it was pointed out by Harp, Samad and

Guha (1989a, 1989b), the major characteristics of these representational schemes is that the

low{level one is suited for the precise and deterministic handling of the connectivity patterns

of small networks, whereas the high{level one is suited for the handling of the structural reg-

ularities of large networks. However, up to now there are no performance studies comparing

the low{ and high{level schemes. It has to be noted that these two types of schemes establish

repesentational extremes between which many \mixed" genotypic representations are possible.

An alternative (high{level) representation scheme according to which the structure of an

ANN is speci�ed by simple growth rules was proposed in (Mjolsness & Sharp, 1986; Mjolsness,

Sharp & Alpert, 1987, 1988; Mjolsness, Sharp & Reinitz, 1990).

3

This scheme is biologically

more plausible than the others, particularly, it enables a more realistic transition from the

genotypes to the phenotypes (i.e. the networks themselves). (Wilson (1987, 1989) considered

growth rules from a more general point of view.)
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FIGURE 1: Example of a low{level network representation according to (Miller, Todd &

Hedge, 1989). The �gure shows the genotypic representation (left) of the connectivity con-

straint matrix (middle) of a simple neural net (right). The matrix entry (i,j) speci�es the

type of constraint on the connection from unit j to unit i; thus, row i of the matrix represents

the constraints on the connections to unit i, and column j represents the constraints on the

connections from unit j. Entry \0" means \weight �xed at zero", and entry \L" means \learn-

able"; other constraint types mentioned by Miller et. al. are \weight �xed at some constant

value" and \weight restricted to positive (negative) values". (The mutation operator randomly

chooses new connection constraints, and the crossover operator randomly chooses a row number

and exchanges that row between two \parents".)
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...Area 1 Area i Area n

projectionarea

start-of-projectionstart-of-area end-of-area

...

FIGURE 2: Example of a high{level network representation according to (Harp, Samad &

Guha, 1989a, 1989b) (details omitted). A network \blueprint" is genotypically represented by

a bit string that consists of several segments. Each segment speci�es (i) the structure (e. g.

the number of units and their spatial arrangement) of some area of the network by means of

area parameters and (ii) the connections (e.g. their density and projection �eld) from this area

to other areas by means of projection parameters. This kind of blueprint representation allows

a compact speci�cation even of very complex networks. (The mutation operator randomly

changes entries of the bit string, the crossover operator swaps corresponding segments between

two strings.)

The choice of the genotypic representation and the evolutionary operators is decisive to

the e�ency of the evolutionary search technique. Particularly, this choice a�ects important

aspects like

� structural completeness (\Which structures of which size and connectivity are avail-

able?"),

� structural correctness (\Do all mutated and recombined genotypes specify correct (mean-

ingful) structures?"),

� structural level of operator application (\At which network level | individual connec-

tions, whole sub-networks | do mutation and recombination operate?"), and

� structural sensibility to operator application (\To what degree do mutation and recom-

bination change the structures?").
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(Note that mutation and recombination are syntactic operators that are applied to the geno-

types without regard to the semantics (function) of the respective phenotypes.) The last two

aspects give rise to some controversy over the applicability of the recombination operator. On

the one side, assuming that small structural changes are more likely to lead to acceptable func-

tional changes than large ones, its applicability appears to be questionable (cf. (Bergman &

Kerszberg, 1987) and the considerations of structure{function gradualism in (Lehar & Weaver,

1987; Conrad, 1988)). On the other side, assuming that sub{networks are functional units,

its applicability, at least at this level, appears to be useful (cf. the concepts of local networks

(3.2), cell assemblies (3.3) and neuronal groups (3.4)).

2.1.3. Hybrid Learning

Generally, all the approaches mentioned above (no matter which type of representational

scheme they are using) realize a crossing of neural and evolutionary learning according to

the hybrid learning cycle shown in table 3. (In this cycle the genotypes and the phenotypes

are not explicitly distinguished; remember that the mutation and crossing{over operators act

on the genotypes whereas the selection operator acts on the phenotypes.) Of course, the

individual approaches di�er greatly in detail; this concerns, in particular, the population size

(ranging from one upwards), the parent{o�spring replacement strategy (e. g. with/without

substitution), the evolutionary operators (e. g. sometimes the recombination operator was

not used for reasons discussed above), the learning procedures (typically back{propagation or

Hebb{type learning), the performance criteria (which can be distinguished into learning criteria

| speed and accuracy | and cost criteria | number of units and/or connections), and the

desired results with regard to these criteria (e. g. \maximal speed in a minimal network")

As it was pointed out in (Miller, Todd & Hedge, 1989), there are several reasons for using

evolutionary search/genetic algorithms in designing networks. In particular, both enumera-

1. Creation of the next population of ANNs by means of �tness{oriented

reproduction. This includes both selection, mutation and recombination.

(The initial population is created at random.)

2. Training of the ANNs by conventional neural learning procedures.

3. Evaluation of the ANNs' �tness values according to some given perfor-

mance criteria.

4. If the desired result is obtained then stop, otherwise goto step 1.

TABLE 3: The hybrid learning cycle.
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tive, random, gradient{descent and heuristic{knowledge{guided search methods are unsuited

because the search space (de�ned by the �tness values above the space of all possible network

structures) is in�nitely large (since there are in�nitely many di�erent structures), undi�eren-

tiable (since changes in the structure are discrete but can have discontinuous e�ects on the

network performance), deceptive (since structurally similar networks can have di�erent �tness

values) and multimodal (since structurally di�erent networks can have similar �tness values).

The price that has to be paid for using the technique of evolutionary search for automated

network design is that of high computational costs. These costs can be reduced by employing

the \natural parallelism" being inherent in this technique (cf. the various approaches to parallel

versions of Holland's genetic algorithm contained in the proceedings of the second and third

international conference on genetic algorithms).

A term sometimes used within the frame of these approaches is that of a genetic neural

network. Following the expositions in (Bergman, 1988; M�uhlenbein & Kindermann, 1989), such

a network is de�ned by four components: a language whose sentences represent the genotypes of

networks; a procedure realizing the genotype{phenotype transition; a procedure mutating the

genotypes; and a procedure (�tness function) measuring the phenotypes' performance values.

(This de�nition is general enough to be also applicable to the hybrid approaches described in

the next section.)

2.2. Evolutionary Training of Arti�cial Neural Networks

One of the recent developments in the �eld of arti�cial neural learning is that of using

the technique of evolutionary search instead of conventional learning procedures for training

arti�cial neural nets (ANNs); see (Caudell & Dolan, 1989; de Garis, 1990a; Dodd, 1990;

Heistermann, 1990; H�o�gen & Siemon, 1990; Merrill & Port, 1988a; Montana & Davis, 1989;

Nol�, Elman & Parisi, 1990; Scholz, 1990; Whitley, 1988; Whitley & Hanson, 1989; Whitley,

Starkweather & Bogart, 1989; Wieland, 1990).

The major idea underlying these approaches is to interpret the weight matrices (or vec-

tors) of the ANNs as genotypes and to change the connection weights by means of speci�c

evolutionary operations. Typcially Holland's genetic algorithm or variants of it have been

used.

Perhaps the most striking argument for evolutionary network training is that this technique,

in contrast to the conventional gradient descent learning procedures, inherently tends to avoid

getting stuck in local minima of the error surface over the weight space (where the error is

de�ned as the di�erence between the actual and the desired network outputs). Evolutionary

training was successfully applied to tasks like the XOR/424-encoder/adder problem (Whitley

& Hanson, 1989), the construction of networks that approximate functions (H�o�gen & Siemon,
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1. Training of the ANNs. This includes

1.1. �tness{oriented selection and

1.2. weigth modi�cation by means of recombination and/or mutation

and results in a new population of ANNs.

2. Evaluation of the ANNs' �tness values, where the error produced by

an ANN serves as the performance measure.

3. If the desired result is obtained then stop, otherwise goto step 1.

TABLE 4: The evolutionary{training cycle.

1990), categorization (Montana & Davis, 1989), robot{arm positioning (deGaris, 1990a), and

the standard pole balancing problem and variations of it (Wieland, 1990).

Generally, the learning cycle performed by the evolutionary{training approaches is as shown

in table 4. (As it is the case with the hybrid learning approaches (2.1.2), the evolutionary{

training approaches show great di�erences in detail, too. Again this concerns, in particular,

the population size, the replacement strategy, and the performance criteria used by them.)

Finally, a brief outline of some individualities of the evolutionary{training approaches men-

tioned above.

Caudell and Dolan (1989) a network model that combines optical and electronic components

was introduced. The weighting of the electro{optical networks is constrained by parametric

connectivity, that means, it is controlled by speci�c parameters in such a way that the number

of these parameters is generally smaller than the number of the connection weights. This

discrepancy leads to intricate dependencies between the weights and, with that, to a highly

complex error surface over the parameter space.

In (Montana & Davis, 1989) various speci�c mutation and crossover operators were de�ned

and tested; thereby the real{valued weights themselves (and not a | binary | encoding of

them as would be typical for genetic algorithms) constituted the genotypes.

In (de Garis, 1990a) the concept of genetic programming was introduced (see also (Conrad,

1988b) and (Koza, 1990) for di�erent uses of this term). According to this concept, both

network modules and their control circuits were trained by the genetic algorithm. Further

aspects of this kind of automated evolutionary network design were described in (de Garis,

1990b).

In (Whitley, 1989; Whitley & Kauth, 1988) a speci�c genetic algorithm called GENITOR

was used. It di�ers in two important aspects from the standard genetic algorithm. Firstly,
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a technique called ranking (Baker, 1985) was employed in order to avoid selective{pressure

problems and, hence, the necessity of scaling (cf. (Goldberg, 1989) for details); according to

this technique, the number of o�springs of an ANN is a function of its rank in the performance{

sorted population. Secondly, it does not work on the conventional generational reproduction

mechanism but employs a one{at{a{time reproduction, that means, one new genotype at a time

replaces the lowest ranking genotype. A distributed version of GENITOR called GENITOR

II was described in (Whitley & Starkweather, 1990).

2.3. Further Hybrid Approaches and Related Works

This section provides a loose overview of further hybrid approaches and of various works

(both from arti�cial intelligence and other �elds) which do not explicitly aim at the combination

of neural and evolutionary learning but are related to this subject.

2.3.1. Whitley and Bogart (1990) employed the technique of evolutionary search (in form

of a rank{based genetic algorithm, cf. 2.2) for pruning unnecessary connections of already

backpropagation{trained, fully connected arti�cial neural networks (ANNs). The underlying

idea was to develop nets that are smaller and therefore faster than the initial ones but still able

to solve the desired tasks. The weights of the starting nets were used to initialize the pruned

nets which, in turn, were re{trained with an increased number of backpropagation cycles.

Another relevant work combining neural and evolutionary learning was presented by Belew,

McInerney and Schraudolph (1990). Here two di�erent approaches were investigated. First, the

GA was sucessfully used for tuning parameters (learning rate and momentum) of the standard

backpropagation algorithm; this approach may be viewed as a typical application of the GA.

Second, and very interesting, the GA was used for searching the space of initial weights of

the networks' connections, from which conventional learning methods (conjugate gradient and

backpropagation) proceed. The idea underlying the latter approach is to e�ectively combine

the global sampling performed by the GA with the local search performed by the conventional

methods. The encoding of the real{valued network weights into the binary genotypes is done

according to a mechanism called dynamic parameter encoding (Schraudolph & Belew, 1990)

which allows an adaptive re�nement of the mapping from the binary genotypes to real numbers.

M�uhlenbein and Kindermann (1989) provided a survey of formal models describing the

dynamics of genotype{phenotype evolution (including the models of Mendelian and ecological

genetics) and of evolutionary algorithms based on these models (including the algorithms of

Rechenberg and Holland). Additionally, genotype and phenotype learning were compared with

the help of the Iterated Prisoner's Dilemma, and an arti�cial system called Pandemonium II

that combines these two types of learning was outlined.

A work done at the intersection of computer science, arti�cial intelligence, and Darwinian

evolution was presented in (Dress, 1987, 1988, 1989; Dress & Knisley, 1987). Based on some
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general, theoretical considerations on the simulation of complex systems, Dress and his col-

leagues focussed on the evolution of synthetic intelligent systems. (The word \synthetic" is

used in a twofold meaning: as a synonym for \assembled from interacting functional mod-

ules", and as a generic term for \real" and \simulated".) Simulation experiments were done

with a synthetic organism (presented as an insect) composed of an adaptive, frequency{coded

neural network and sensors and e�ectors for the environmental interaction; thereby evolu-

tionary search was used for optimizing the feature{detection capabilities of the organism's

non{adaptive retina. The population size was restricted to one, and no recombination op-

erator was applied. The experiments run with two types of selection: positive selection, i.e.

selection for higher �tness, and negative selection, i.e. selection against lower �tness. (The

optimization of the feature{detection capabilities of an arti�cial retina by means of evolution

strategy was also treated by Lohmann (1990).)

Koza (1990) described how LISP{represented arti�cial neural networks can evolve by ap-

plying the genetic operators to the LISP{expressions encoding the nets.

Another work that was inspired, in a broad sense, by the concept of evolution was presented

in (Hagiwara & Nakagawa, 1989). Here the intention was to use selection (of the unit which

produces the maximum error value) and mutation (of this unit's weights) in order to escape

from local error minima in backpropagation{trained ANNs.

Lee and Peterson (1989) used the principles of mutation and selection to enable unsu-

pervised learning networks (more exactly, generalized versions of Kohonen's self{organizing

feature maps) to change their structure adaptively.

Some of the evolutionary{design and evolutionary{training approaches treated in the pre-

ceding sections are capable of modifying the number of units of the networks at each successive

generation; especially see (Harp, Samad & Guha, 1989a, 1989b) and also (Mjolsness & Sharp,

1986; Mjolsness, Sharp & Alpert, 1987, 1988). This capability brings them in close con-

tact to various other, \non{evolutionary" approaches to networks of variable size; e. g. (Ash,

1989; Fahlman & Lebiere, 1990; Honavar & Uhr, 1988; Mezard & Nadal, 1989; Mozer &

Smolensky, 1989; Sietsma & Dow, 1988) and (Baum 89). Common to these evolutionary and

non-evolutionary approaches is that they enable learning by modifying both the connection

weights and the number of units/connections.

Works done at the intersection of classi�er systems (cf. chapter 1) and ANNs were described

in e. g. (Belew & Gherrity, 1989; Compiani, Montanari, Serra & Valastro, 1989; Davis, 1988,

1989; Schmidhuber, 1989). Some analogies between classi�er systems and ANNs were shown

in (Belew & Forrest, 1988). A general comparision between genetic and connectionist models

was drawn by Laussermair (1988).

A bibliography of works relating ANNs and evolutionary search was provided in (Rudnick,

1990).

The �rst steps towards the use of the evolutionary principles of mutation and selection in
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the �eld of ANNs were described in (Selfridge, 1958; Klopf & Gose, 1969).

2.3.2. In (Bergman & Kerszberg, 1987; Kerszberg & Bergman, 1988) the evolution of com-

putational abilities in competing automata was studied. The automata consisted of threshold{

like units that interact via unmodi�able (positive or negative) connections; the evolutionary

process proceeds by mutation and selection only, recombination was not used (for the rea-

son mentioned in section 2.1). In accounting for the nature-versus-nurture problem | \at

what extend is the brain/behavior genetically determined?" |, automata having di�erently

constrained connectivity patterns were considered. The application task was to recognize sim-

ilarities in successively presented input patterns. Simulation experiments showed that in the

course of evolutionary learning speci�c connectivity patterns develop, where the automata hav-

ing neither a too weakly nor a too strongly constrained connectivity pattern learned best. This

observation seems to be consistent with work done in in the �eld of neurobiology (see 2.3.3).

Another interesting aspect, the evolution of the learning capability itself, was explored by

Chalmers (1990). Here the underlying idea was to encode the dynamic weight{space properties

of a network into a genotype and then see whether any interesting learning mechanisms evolve.

Chalmers focussed on supervised learning of (linearly separable) mappings in single{layer feed{

forward networks having a �xed structure; the weight{space dynamics of the networks is de-

scribed by a parametrized weight{update function. Chalmers concluded that \the methods

of genetic search and connectionism can be combined to provide a demonstration that the

capacity for learning (adaptation within the lifetime of an individual) may evolve in a natural

fashion under the pressures of evolution (adaptation over the history of a population)" and

that \this double adaptive loop seems to be a powerful mechanism for coping with a diverse

environment".

The question under which conditions and how quickly learning could evolve was investigated

within the frame of the work described in (Miller & Todd, 1990; Todd & Miller, 1990, 1991).

Miller and Todd performed experiments with arti�cial creatures that have a simple brain and

live in a hypothetical environment consisting of food and poison. Food and poison each have

speci�c colors and smells within one creature's life (e.g. food{green{sweet and poison{red{

sour), where the smell accuracy depends on the actual environmental conditions; furthermore,

the smell{object relations are �xed, but the color{object relations vary between creatures (e.g.

poison may be red for one creature but green for another). Consequently the learning task was

to build up associations between color and object. The experiments indicated an interesting

relationship between the smell accuracy and the time taken to evolve color learning: the time

was shortest for accuracies around 75 percent and increased for accuracies diverging from that

middle range. In their interpretation of this relationship Miller and Todd argued that the

U{shape emerges indirectly \from a trade{o� between the phylogenetic adaptive pressure to

evolve learning (during species{wide evolution), and the ontogenetic ease of learning (during

each individual creature lifetime)". (See also 2.3.4.)
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The evolution by mutation and selection of Boolean automata was investigated in (Kau�-

man, 1969, 1984, 1986; Kau�man & Smith, 1986; Kau�man & Levin, 1987). This work was

greatly motivated by the various open questions concerning the stability of ontogenetic devel-

opment, particularly its genetic regulation and its capability to evolve. The Boolean automata

consisted of interconnected binary components, each realizing one of the possible Boolean func-

tions, and they were classed by the (uniform) number of input connections per component.

The theoretical and experimental studies concentrated on the dynamic behavior of the au-

tomata (in terms of state cycles and their basins of attraction, where at each time the state of

an automata is determined by the states of its components) and its evolution given a speci�c

�tness landscape.

2.3.3. An interesting question related to the approaches treated in sections 2.1 and 2.2 is

how and to what extent real brains are genetically determined. Although there is little known

about the details underlying this brain{genetics connection, in biology the following general

statements are commonly accepted (esp. cf. Changeux, 1983a, 1985; Changeux, Heidmann &

Patte, 1984; Gierer, 1988).

The degree of genetic brain determinism decreases from evolutionary lower to higher an-

imals. This determinism is almost absolute in invertebrates and implies an apriori speci�ed,

more or less precise point{to{point wiring; against that, it is less strict in vertebrates and allows

variability in the brain connectivity (even between genetically identical individuals). Particu-

larly in vertebrates and especially in mammals, the brain development depends on both genetic

and epigenetic factors and requires the organism's interaction with its environment.

In view of the nature{versus{nurture problem it can be said that the initial brain state of a

vertebrate is neither \tabula rasa" nor \completely pre{programmed"; instead, the genes code

for some (species{speci�c) brain invariants and for general rules for brain development. As it

was pointed out by Gierer (1988, p. 19), \genetically speci�ed initial conditions of the neural

network taking into account of features which vary rarely or not at all in di�erent situations

would provide the organism with a clear head start as compared with a `tabula rasa' state even

if the latter allows, in principle, to deal with any conceivable kind of information processing

input ... given enough time".

AI works that take these nature{versus nurture aspects in one or another way into account

were described in (Bergman & Kerszberg, 1987; Kerszberg & Bergman, 1988) and (Mjolsness,

Sharp & Alpert, 1988). A work that focusses on the construction of a genetic{like code for

ANNs was presented by Boseniuk (1990); the intention was to use this code, which controls

interactions between simulated processes like cell growth or cell division, as an object of evolu-

tionary optimization. Stork, Walker, Burns and Jackson (1990) used the GA for experimentally

illustrating how genetically speci�ed preadaptations may lead to anomalous neural connections.

Gierer (1988) focussed on question of how much genetic information controls the brain

development. In short, Gierer arrived at the following two interesting suggestions: on the one

14



hand, only a small number of genes may be required for generating a highly structured brain;

on the other hand, a large number of genes may be involved in the speci�cation of the connec-

tion strenghts. The total number of genes contributing to brain development \is presumably

determined by a balance between evolutionary pressures in favour of �ne tuning facilitating

performance under common conditions, and those in favour of maintaining versatility and

responsiveness for coping with uncommon situations" (p.19).

2.3.4. The Weismann doctrine states that there is no | Lamarckian | retranslation from

the phenotype to the genotype, that means, phenotypic modi�cations acquired by learning or

environmental factors cannot be translated into the genotype (and, hence, are not inherita-

ble). However, according to a hypothesis sometimes called the Baldwin e�ect (Baldwin, 1896;

Morgan, 1896) it is nevertheless possible that learning guides evolution without violating the

Weismann doctrine. The idea underlying this hypothesis may be sketched as follows: the abil-

ity to learn in
uences the degree of adaptability and, by this way, the number of descendants;

this, in turn, leads to a modi�ed evolutionary search space. In (Belew, 1989; Hinton & Nowlan,

1987; Maynard Smith, 1987; Nol�, Elman & Parisi 1990; Plotkin 1988) this hypothesis was

recently reconsidered. Hinton and Nowlan performed experiments demonstrating that learn-

ing can speed up evolution given a �xed environment. Belew mathematically analyzed the

Hinton{Nowlan model and extended it by incorporating culture (reduced to a real number)

as an additional factor in
uencing an individual's �tness value. A strong interaction between

learning and evolution is also indicated by the experiments reported by Nol� et. al.

The question how evolution and cognition are related to each other is the subject of evo-

lutionary epistemology (Lorenz, 1973; Vollmer, 1975). According to the main thesis of this

discipline, which may be viewed as the \biological and philosophical basis" particularly of the

evolutionary{design approaches treated in section 2.1, the subjective cognitive structures are

adapted to the structures in the real world since they are a result of the biological evolution,

and they coincide (at least partially) with the real structures since only such a coincidence en-

ables survival (Vollmer, 1975, p. 102). Further considerations on the evolutionary epistemology

are contained in e. g. (Lorenz & Wuketits, 1983; Riedl, 1982; Riedl & Wuketits, 1987, Vollmer,

1988). Other publications focussing on the evolution{cognition relation are e. g. (Lewontin,

1990; Piatelli{Palmarini, 1989; Seitelberger, 1989).

Further literature: (Hastings & Waner, 1985, 1986; Hastings, Waner & Wu, 1989; Waner

& Wu, 1987a, 1987b) and (Ackley, 1985, 1987; Bateson, 1984; Dewdney, 1985; Fedanzo, 1986;

Oosthuizen, 1989; Stolorz & Ho�mann, 1988).
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3. SELECTIVE THEORIES IN THE NEUROSCIENCES

3.1. General Aspects

In the neurosciences several theories have been proposed that combine aspects of neural

and evolutionary learning; these are the evolutionary selection circuits model, the theories of

selective stabilization of synapses and pre{representations, and the theory of neuronal group

selection.

Essential to these theories is the assumption that the brain, or the nervous system in

general, works on the principle of selection; in other words, selection is assumed to play the

same role in the brain in somatic time as it does in biological evolution in phylogenetic time.

This view of the brain as a selective system, or as a \Darwin machine" as Calvin (1987) said,

has some important implications; in particular, it requires that there is a great variety in the

neural tissue which is prior to any environmental interaction and upon which selection can act

in a �tness{oriented, eliminative manner. (Of course, this requirement for variety has to be

met by all selective systems.)

The selective theories are radically opposed to the instructive theories which assume that

the development of the brain is directed epigenetically during the organism's interaction with

the environment by rules for the precise brain wiring. The two basic arguments underlying

the controvery between the supporters of the selective and the instructive theories are the

following: from the \selective view" the instructive theories have to be rejected since they

imply a pre{existing order in the world which is transferred into the brain; against that,

from the \instructive view" it is argued that the selective theories go wrong since they imply

a pre{existing wiring of all the potentially learnable things. Currently it is not de�nitely

known whether the instructive or the selective theories are the correct ones; however, there are

several neurobiological facts (e. g., Edelman, 1987, pp. 37{42) which indicate that, in one or

another way, selective mechanisms may be fundamental to the brain development. (Selective{

instructive disputes have some tradition in biology: remember the controversial theories of

antibody production or of biological evolution.)

The following sections give an overview of the four selective theories mentioned above. The

main emphasis is on the basic claims made by them; additionally, each section contains a brief

guide to additional literature. Further selectionist views of the brain proposed in the �eld

of the neurosciences that are not considered in this chapter were described in (Jerne, 1967;

Young, 1973, 1975).

3.2. The Evolutionary Selection Circuits Model

The evolutionary selection circuits model (Conrad, 1974, 1976), ESCM for short, con-
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ceptually describes neural learning as the gradual modi�cation of the information{processing

capabilities of enzymatic neurons through a process of variation and selection in somatic time.

In order to put this more precisely, �rst a closer look is taken at enzymatic neurons, and then

the fundamental claims of the ESCM are described.

The ESCM starts from the view that the brain is organized into various types of local

networks which contain enzymatic neurons, that is, neurons whose �ring behavior is controlled

by enzymes called excitases. (For details of this control and its underlying biochemical processes

see (e. g., Conrad, 1984, 1985).) These neurons incorporate the principle of double dynamics

(Conrad, 1985) by operating at two levels of dynamics: at the level of readin or tactilization

dynamics, the neural input patterns are transduced into chemical{concentration patterns inside

the neuron; and at the level of readout dynamics, these chemical patterns are recognized by

the excitases. Consequently, the enzymatic neurons themselves are endowed with powerful

pattern{recognition capabilities where the excitases are the recognition primitives. Both levels

of dynamics are gradually deformable as a consequence of the structure{function gradualism

| \slight changes in the structure cause slight changes in the function" | in the excitases.

4

There are three fundamental claims made by the ESCM: redundancy of brain tissue, speci-

�ty of neurons, and existence of brain{internal selection circuits. According to the claim for

redundany, there are many replicas of each type of local network; that means, the brain consists

of local networks which are interchangeable in the sense that they are highly similar or even

identical with regard to the connectivity (including the synaptic strengths) and the properties

of their neurons. The claim for speci�ty says that the excitases are capable of recognizing

speci�c chemical patterns and, with that, cause the enzymatic neurons to �re in response

to speci�c input patterns. According to the third claim, the brain contains selection circuits

which direct the �tness{oriented, gradual modi�cation of the local network's excitase con�gu-

rations. These selection circuits include three systems: a testing system which allows to check

the consequences (e.g., pleasure or pain) of the outputs of one or several local networks for the

organism; an evaluation system which assigns �tness values to the local networks on the basis

of these consequences; and a growth{control system which regulates (stimulates or inhibits)

the production of the nucleic acids which code for the local networks' excitases on the basis of

these �tness values. The nucleic acids, whose variability is ensured by random somatic recom-

bination and mutation processes, di�use to neighbouring networks of the same type (where

they perform the same function because of the interchangeability property mentioned above).

These claims imply that neural learning proceeds by means of the gradual modi�cation of

the excitase con�gurations in the brain's local networks through the repeated execution of the

following evolutionary learning cycle:

1. Test and evaluation of the enzymatic neuron{based local networks. As a result, a �tness

value is assigned to each network.
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2. Selection of the local networks. This involves the �tness{oriented regulation of the pro-

duction of the excitase{coding nucleic acids, as well as their spreading to adjacent inter-

changeable networks.

3. Application of somatic recombination and selection to these nucleic acids. This maintains

the range of the excitase con�gurations.

The execution stops when a local network having a su�ciently high �tness is found. Conrad

emphasized that this evolutionary learning cycle is much more e�cient than natural evolution

because the selection circuits enable an intensive selection even if there is hardly a di�erence

between the �tness values of the interchangeable networks.

Finally, further works of reference. The ESCM is part of extensive work focussing on the

di�erences between the information processing capabilities of biological (molecular) systems

and conventional computers; the interested reader is referred to (Conrad, 1985, 1988a, 1989)

and the references therein.

A computational speci�cation of the ESCM which concentrates on the pattern{processing

capabilities of the enzymatic neurons, together with its sucessful application to a robot{control

task, was presented by Kampfner and Conrad (1983a). Investigations of this computational

variant were described in (Kampfner & Conrad, 1983b; Kampfner, 1988). Another computa-

tional speci�cation which concentrates on the intraneuronal dynamics of enzymatic neurons is

described by Kirby and Conrad (1984). Kirby and Conrad (1986) described a combination of

these two speci�cations. Furthermore, see (Akingbehin & Conrad, 1989; Conrad et. al., 1989).

3.3. The Theories of Selective Stabilization

of Synapses and Pre{Representations

The theory of selective stabilization of synapses or brie
y TSSS was proposed by

Changeux and his co{workers (Changeux, Courrege & Danchin, 1973; Changeux & Danchin,

1976). It accounts for neural learning during development by postulating that a somatic selec-

tion mechanism acts at the level of synapses and contributes to the wiring pattern in the adult

brain. Subsequently the neurobiological basis and the major claims of the TSSS are depicted.

The neurobiological basis of the TSSS comprises aspects of both neurogenesis and neuro-

genetics.

In vertebrates one can distinguish several processes of brain development. These are the

cellular processes of cell division, movement, adhesion, di�erentiation, and death, and the

synaptic processes of connection formation and elimination. (For details see (Cowan, 1978;

Cowan et. al., 1984; Purves & Lichtman, 1985).) The TSSS focusses on the \synaptic aspect"

of neurogenesis; it deals with the outgrowth and stabilization of the synapses, and it takes the

developmental stage where maximal synaptic wiring exists as its initial state.
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The neurogenetic attidue of the TSSS constitutes a compromise between the preformist

(\speci�ed{by{genes") and the empirist (\speci�ed{by{activity") view of brain development.

It is assumed that the genes involved in brain development, the \genetic envelope", only specify

the invariant characters of the brain; this includes, in particular, the connections between the

main categories of neurons (i. e. between groups of neurons which are of the same morphological

and biochemical type) and the rules of synaptic growth and stabilization. These rules allow

for an activity{dependent, epigenetic synapse formation within the neuronal categories. (As

Changeux (1980, p. 193) formulated: \The genetic envelope o�ers a hazily outlined network,

the activity de�nes its angles.")

The TSSS makes three major claims. First, at the critical stage of maximal connectivity

there is a signi�cant but limited redundany within the neuronal categories as regards the

speci�ty of the synapses. Second, at this time of so{called \structural redundany" any synapse

may exist under (at least) three states of plasticity: labile, stable, and degenerate. Only the

labile and stable synapses transmit nerve impulses, and the acceptable state transitions are

those from labile to either stable or degenerate and from stable to labile. Especially, the state

transition of a synapse is epigenetically regulated by all signals received by the postsynaptic

soma during a given time interval. (The maximal synaptic connectivity, the mechanisms of

its development, and the regulative and integrative properties of the soma are determinate

expressions of the genetic envelope.) Third, the total activity of the developing network leads to

the selective stabilization of some synapses, and to the regression of their functional equivalents.

As a consequence, structural redundancy decreases and neuronal singularity (i. e., individual

connectivity) increases. This provides a plausible explanation of the connection elimination

naturally occuring during neural development.

For further readings in the TSSS see (Changeux, 1983a, 1983b, 1985; Changeux, Heidmann

& Patte, 1984).

The theory of selective stabilization of pre{representations (TSSP), which may be

viewed as an extension of the TSSS, provides a selectionist view of neural learning in the

adult brain (Changeux, 1983b; Changeux, Heidmann & Patte, 1984; Heidmann, Heidmann

& Changeux, 1984). The theory postulates that somatic selection takes place at the level of

neuronal networks. Similar to Edelman's theory of neuronal group selection (see 3.4), the TSSP

may be viewed as an attempt to show how neurobiology and psychology are related to each

other. (There are several parallels between the works of Changeux and Edelman; however, an

investigation of these parallels is beyond the scope of this chapter.) In what follows, the two

major claims of this theory are outlined.

The �rst claim is that there exist mental objects or \neural representations" in the brain. A

mental object is de�ned, in a general manner, as the physical state achieved by the correlated

and transitory (both electrical and chemical) activity of a cell assembly consisting of a large

number of neurons having di�erent singularities.

5

According to the TSSP, three classes of
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mental objects are distinguished. First, primary percepts; these are labile mental objects

whose activation depends on the direct interaction with the outside world and is caused by

sensory stimulations. (Primary percepts may exist before birth and are located at the primary

and secondary areas of the cerebral cortex.) Second, stored representations; these are memory

objects whose evocation does not demand environmental interaction and whose all{or{none

character of activity results from a stable, cooperative coupling between the neurons. Third,

pre{representations; these are mental objects which are generated before and concomitant

with any environmental interaction. Pre{representations are labile and of great variety and

variability; they result from the spontaneous but correlated �ring of neurons or groups of

neurons.

The second claim made by the TSSP is that learning in the adult brain corresponds to

the selective stabilization of pre{representations, that means, the transition from selected pre{

representations to stored representations. As stated by Changeux, this requires, in the simplest

case, the interaction with the environment; in this case the criterion of selection is the resonance

(spatial overlapping or �ring in phase) between a primary percept and a pre{representation.

Further literature on the TSSP: (Changeux & Dehaene, 1989) (here the two theories, TSSS

and TSSP, were embedded in more general considerations on the neural basis of cognition) and

(Dehaene, Changeux & Nadal, 1987; Toulouse, Dehaene & Changeux, 1986) (here a formal

model of neural learning on the basis of the TSSP was described).

3.4. The Theory of Neuronal Group Selection

Among the selective theories the theory of neuronal group selection (abbreviated to TNGS)

or \neural Darwinism" (Edelman, 1978, 1987) is both the most rigorous and elaborate one.

This theory, which has attracted much attention especially in the last few years, bridges the gap

between biology and psychology by postulating that somatic selection is the key mechanism

which establishes the connection between the structure and the function of the brain. As done

in the preceding sections, below the major ideas of the TNGS are described.

There are three basic claims. First, during (prenatal and early postnatal) development,

primary repertoires of degenerate neuronal groups were formed epigenetically by selection.

Thereby a neuronal group is considered as a local anatomical entity which consists of hundreds

to thousands of strongly connected neurons, and degenerate neuronal groups are groups that

have di�erent structures but carry out the same function more or less well (they are noniso-

morphic but isofunctional). This concept of degeneracy is fundamental to the TNGS; it implies

both structural diversity and functional redundancy and, hence, ensures both a wide range of

recognition and the reliability against the loss of neural tissue. Degeneracy naturally origins

from the processes of brain development (cf. section 3.3) which are assumed to occur in an

epigenetic manner and to elaborate several selective events at the cellular level.

6

According
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to the regulator hypothesis, these complex developmental processes, as well as the selective

events accompaning these processes, are guided by a relatively small number of cell adhesion

molecules.

Second, in the (postnatal) phase of behavioral experience, a secondary repertoire of function-

ing neuronal groups is formed by selection among the preexisting groups of each primary

repertoire. This group selection is accomplished by epigenetic modi�cations of the synaptic

strenghts without change of the connectivity pattern. According to the dual rules model , these

modi�cations are realized by two synaptic rules that operate upon populations of synapses

in a parallel and independent fashion: a presynaptic rule which applies to long{term changes

in the whole target neuron and which a�ects a large number of synapses; and a postsynaptic

rule which applies to short{term changes at individual synapses.

7

The functioning groups

are more likely to respond to identical or similar stimuli than the non{selected groups and,

hence, contribute to the future behavior of the organism. A fundamental operation of the

functional groups is to compete for neurons that belong to other groups; this competition

a�ects the groups' functional properties and is assumed to play a central role in the formation

and organization of cerebral cortical maps. (All these hypotheses have been integrated in a

model, sometimes called the con�nement{competition{selection model, which accounts for the

development of topographic maps in the adult brain.)

Third, reentry | phasic signaling over re{entrant (reciprocal and cyclic) connections be-

tween di�erent repertoires, in particular between topographic maps | allows for the spatiotem-

poral correlation of the responses of the repertoires at all levels in the brain. Reentry is viewed

as an important mechanism supporting group selection and as being essential both to catego-

rization and the development of consciousness. Two fundamental structures based on reentry

are that of a classi�cation couple | re{entrant repertoires that can perform classi�cations

more complex than a single involved repertoire could do | and that of a global mapping |

roughly, re{entrant repertoires that correlate sensory input and motor activity.

Some brief notes on how the TNGS accounts for psychological functions. Following Edel-

man's argumentation, categories do not exist apriori in the world (the world is \unlabeled")

and categorization is the fundamental problem facing the nervous system. This problem is

solved by means of group selection and reentry. Consequently, categorization largely depends

on the organism's interaction with its environment and turns out to be the central neural

operation required for all other operations. Based on this view of categorization, Edelman

suggests that memory is \the enhanced ability to categorize or generalize associatively, not the

storage of features or attributes of objects as a list" (Edelman, 1987, p. 241) and that learning,

in the minimal case, is the \categorization of complexes of adaptive value under conditions of

expectancy" (Edelman, 1987, p. 293).

There is a large body of literature on the TNGS. The most detailed depiction of the theory

was provided in Edelman's book (Edelman, 1987). In order to test the TNGS, a series of
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computer models which embody the theory's major ideas have been constructed. These are

the Darwin I model (Edelman, 1981), the Darwin II model (Edelman & Reeke, 1982; Reeke &

Edelman, 1984; Edelman, 1987), and the Darwin III model (Reeke & Edelman, 1988; Reeke,

Sporns & Edelman, 1988).

Edelman sharply criticizes both the symbolic and the subsymbolic (connectionist) arti�cial

intelligence approach. The main arguments underlying his criticism are that here it is assumed

that the world is prelabeled and that the brain acts in an instructionist mode like a computer

(Edelman, 1987; Reeke & Edelman, 1988; Reeke, Sporns & Edelman, 1988).

Recently appeared reviews of the TNGS: (Crick, 1989; Michod, 1989; Nelson, 1989; Smoliar,

1989; Patton & Parisi, 1989).

4. CONCLUDING REMARKS

In this chapter a broad overview has been provided of works carried out at the intersec-

tion of the neural and the evolutionary learning paradigm. This overview has shown that the

combination of these two learning paradigms is of great interest for several reasons: generally,

it may prove useful in explaining the structure{function connection of neural or neural{type

networks; in particular, from the perspective of arti�cial intelligence it o�ers new possibilities

in improving both the learning performance and the representational transparency of arti�cial

neural nets, from the perspective of the neurosciences it has a major impact on our under-

standing of the neural{level processes that underly the higher cognitive abilities, and from

the perspective of evolutionary theory and psychology it sheds new light on the relationship

between evolution and learning.

The combination of neural and evolutionary learning establishes a very young research area

in arti�cial intelligence that has a strongly interdisciplinary character (a�ecting aspects and

problems that have been traditionally treated within the frame of either the neurosciences,

or genetics, or evolution theory or computer science). For answering the questions existing

and arising in this area a lot of experimental and theoretical work has to be done in a close

interdisciplinary cooperation; however, this work is worth doing since there is the justi�ed hope

that it will lead to results that are useful and pro�table for all the involved disciplines.
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NOTES

1 Examples of such vague statements about the structure{function connection are: \the

more complex the problem the more hidden units have to be used"; \networks being too large

may loose their generalization ability", see e. g. (Huyser & Horowitz, 1988); \learning a function

requires a larger network than implementing it", see e.g. (Mozer & Smolensky, 1989; Sietsma

& Dow, 1989; Whitley & Bogart, 1990); \unstructured networks produce incomprehensible

representations", see e.g. (Dolan & Dyer, 1987a; Feldman, 1988).

2 Merrill and Port (1988) introduced the term \fractally con�gured neural networks". This

term indicates that the space of all possible network structures was partitioned into regions of

connectivity and non{connectivity in a way similar to the fractal partitioning of the complex

plane into regions of attraction and in�nite growth. (The evolved structures themselves were

not fractal.)

3 One of the major assumptions underlying this work of Mjolsness and his co{workers is that

structured networks, unlike unstructured ones, o�er the possibility of automated functional

scaling{up, that means, of automatically generating nets that solve bigger problems from nets

that solve small ones.

4 As Conrad (1988a) pointed out, this structure{function gradualism is the key to natural

evolution/evolutionary learning in general and it is a condition for the evolutionary adaptability

of biological systems in particular; thereby evolutionary adaptability is the extent to which

mechanisms of variation and selection can be utilized in order to survive in uncertain and

unknown environments.

5 The concept of a cell assembly was introduced by Donald Hebb (1949). Roughly, in

the original formulation, a cell assembly is viewed as a set of strongly interconnected neurons

which is used as an elementary unit in higher cognitive processes. Thereby the connections

alter during experience according to a particular rule, nowadays known as the Hebb rule,

suggesting that the synaptic strength between any two neurons increases whenever they are

simultaneously active.

6 Such selective events are strongly indicated by the developmental processes of cell death

and connection elimination. A mechanism which may account for these regressive processes is

the competition for quantitatively limited trophic factors; see (Purves & Lichtman, 1985).

7 An important property of this dual rules model, as stressed by Edelman and his co{

workers, is that the pre{ and postsynaptic modi�cations are functionally indistinguishable at

the level of the individual synapse. It is interesting to note that the postsyaptic rule may be

viewed as a general case of the Hebb rule (see note 5); however, because the former depends

on global population e�ects whereas the latter only depends on local �ring behavior, these two

rules di�er largely in their actions.
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