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Abstract

In this paper we investigate coordination principles inspired
by the behaviour of honeybees and ants for coordination pur-
poses in multi-robot systems. Specifically, we study the prob-
lem instances of bee-inspired robot Foraging and ant-inspired
robot Coverage, where Foraging is the problem of exploring
the environment in search of food or provisions and Coverage
is the problem of deploying a robotic swarm in the environ-
ment with the task of maximising the sensor coverage of the
environment. To effectively and efficiently solve both prob-
lems, distributed multi-robot coordination is required. For the
first problem we investigate a bee-inspired solution method.
The second problem is studied using a stigmergic approach.
In an extensive set of experiments we first study the feasibility
of the proposed multi-robot coordination for robotic swarms
with extended resources and discuss the benefits and limita-
tions of using these swarms. Furthermore, as the downsizing
in swarm robotics becomes increasingly important with on-
going miniaturization in various applications, the feasibility
of the proposed coordination techniques for robotic swarms
with limited resources is studied in detail; the practical re-
quirements for overcoming the limitations of these swarms
are introduced and the main need to incorporate these robots
in real world experiments is discussed.

Introduction
Swarm robotic systems are motivated by a wide range of
application areas, such as for instance surveillance and pa-
trolling, where mobile guarding robots are considered as an
alternative and improvement over fixed security cameras and
even humans. Other application areas include exploration
and identification of hazardous environments (e.g., nuclear
plants and fire detection), mobile sensor networks, space ex-
ploration, etc.

Recent years have seen an increasing interest in taking
inspirations from natural phenomena for solving computa-
tional problems in disciplines at the intersection of computer
science, robotics and economics. An interesting natural phe-
nomenon is the behaviour that can be observed in colonies
of social insects such as ants and bees. For instance, recent
work shows a strong potential in creating artificial systems
that mimic insect behaviour that can solve complex coor-
dination tasks such as e.g., routing on the internet, mobile

ad hoc network routing, robotic tasks, etc. (Lemmens and
Tuyls, 2012; Dressler and Akan, 2010; Floreano and Mat-
tiussi, 2008). These insects have evolved over a long period
of time and display remarkable behaviours that are highly
suitable for addressing the complex tasks that they are fac-
ing. Swarm optimisation algorithms, like ant colony opti-
misation (Dorigo et al., 2006), rely on pheromone trails to
mediate (indirect) communication between agents.

These pheromones need to be deposited and sensed by
agents while they decay over time. Though easy to simulate,
artificial pheromones are hard to bring into real-life robotic
applications. However, recently non-pheromone-based al-
gorithms where developed as well (Lemmens, 2011). Such
algorithms are inspired by the foraging and nest-site selec-
tion behaviour of (mainly) bees. In general, bees explore
the environment in search for high quality food sources and
once returned to the hive they start to dance in order to com-
municate the location of the source. Using this dance, bees
recruit other colony members for a specific food source.

We draw inspiration from these insect behaviours with the
goal to create emergent intelligent systems for distributed
coordination that can be deployed in real world settings.
However, doing the experiments with real robotic swarms
is very challenging. On one side robotic swarms with lim-
ited resources such as e-pucks (Mondada et al., 2009) are
robust, compact, easy to setup and relatively cheap in terms
of price but have limited sensing, computation and actua-
tion capabilities. On the other hand robotic swarms with
extended resources, which contain advanced cameras and
general purpose computers, have high computational power,
good movement capabilities and are modular. In this paper,
we provide an extensive study of the pros and cons of each
of these swarm types.

The remainder of the paper is organised as follows. First
we introduce the biological background of the foraging and
coverage approaches. Then we continue with the swarm
robotics approach with extended resources and it is ex-
plained how multi-robot coordination can be implemented in
these swarms in a set of experiments, highlighting the vision
and communication capabilities of such advanced robots.
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Figure 1: Biological inspiration (a) ants exploring two paths; the shortest path prevails. (b) honeybee waggle dance communi-
cating a PI vector. (c) Lévy flight and path integration.

After that we continue by elaborating the coordination ap-
proaches for swarm robotics with limited resources: vision
and communication techniques are explained; implementa-
tion of both multi-robot coverage and foraging are presented
in a set of experiments in the context of limited available re-
sources, highlighting the novel techniques in computation
and communication that are used to make such implementa-
tions possible. Finally we conclude.

Biological Inspiration
Most of the research in swarm intelligence revolves around
the behaviour of ants (Dorigo and Stützle, 2004; Dorigo and
Blumb, 2005; Dorigo et al., 2006). The principle is simple
yet elegant: ants deposit a pheromone trail on the path they
take during travel. Using this trail, they are able to navigate
toward their nest or food and communicate with their peers.
More specifically, ants employ an indirect recruitment strat-
egy by accumulating pheromone trails. When a trail gets
strong enough, other ants are attracted to it and will follow
this trail toward a food destination. The more ants follow
a trail, the more pheromone is accumulated and in turn the
trail becomes more attractive for being followed. This is
known as the autocatalytic process. Since long paths take
more time to traverse, it will require more ants to sustain
a long path. As a consequence, short paths will eventually
prevail, see Figure 1(a). Pheromone-based algorithms are al-
ready used to address various problems successfully, such as
(amongst others) the Traveling Salesman Problem (Dorigo
and Stützle, 2004), Routing Problem (Di Caro et al., 2005),
Group Shop Scheduling (Blum and Sampels, 2004), and
area coverage with robots (Wagner et al., 1999; Ranjbar-
Sahraei et al., 2012b).

Foraging honeybees display two types of behaviour, i.e.,

recruitment and navigation. In order to recruit other colony
members for food sources, honeybees inform their nest
mates of the distance and direction of these food sources by
means of a waggling dance performed on the vertical combs
in the hive. This dance (i.e., the bee language) consists of
a series of alternating left-hand and right-hand loops, inter-
spersed by a segment in which the bee waggles her abdomen
from side to side. The duration of the waggle phase is a mea-
sure of the distance to the food. The angle between the sun
and the axis of a bees waggle segment on the vertical comb,
represents the azimuthal angle between the sun and a tar-
get location, i.e., the direction in which a recruit should fly
(see Figure 1(b) and 1(c)). Other members of the colony can
adopt the “advertisement” for a food source. The decision
mechanism for adopting an “advertised” food-source loca-
tion by a potential recruit is not completely understood. It is
considered that the recruitment amongst bees is a function
of the quality of the food source.

Different species of social insects, such as honeybees and
desert ants, make use of non-pheromone-based navigation.
Non-pheromone-based navigation mainly consists of Path
Integration (PI), which is the continuous update of a vec-
tor by integrating all angles steered, and all distances cov-
ered (Collett et al., 1998). A PI vector represents the insects
knowledge of direction and distance towards its destination.
To construct a PI vector, the insect does not use a mathemati-
cal vector summation, but employs a computationally simple
approximation (Collett et al., 1998). Using this approxima-
tion, the insect is able to return to its destination directly.
More precisely, when the path is unobstructed, the insect
solves the problem optimally. However, when the path is ob-
structed, the insect has to fall back on other strategies such
as exploration or landmark navigation (Cheng et al., 1987;
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Figure 2: Multi-Robot foraging using swarm robots with extended resources. (a) All robots start at the hive (H) location. (b)
Robots are exploring the unknown environment randomly. The left two robots have found the food (F) location and are foraging
between the hive and the food location. (c) All robots have converged to foraging behavior.

Collett et al., 2002) to solve the problem. Obviously, bees
are able to fly, i.e., when they encounter an obstacle, they can
mostly choose to fly over it. However, even if the path is un-
obstructed, bees tend to navigate over the entire path using
landmarks. The landmarks divide the entire path into seg-
ments and each landmark has a PI vector associated with it.
This behaviour decreases navigation errors and ensures ro-
bustness. We refer to a home-pointing PI vector as a Home
Vector (HV). PI is used in both exploration and exploita-
tion. During exploration insects constantly update their HV.
It is however, not used as an exploration strategy. During ex-
ploitation, the insects update both their HV and the PI vector
indicating the food source, and use these vectors as guidance
to a destination.

Swarm Robotics with Extended Resources
In this section we introduce the swarm robotics with ex-
tended resources. These swarms use general purpose com-
puters, high quality and advanced video cameras, 3D sensors
for mapping (e.g., laser range finders), accurate wheel en-
coders that makes enhanced odometry possible, fused data
of accelerometers, and a gyroscope.

The Turtlebot1 platform is a robot with extended re-
sources. This robot is equipped with a laptop with core-i3
CPU for computation that is running the Robot Operating
System2 framework.

As a main sensing unit the Turtlebot is equipped with a
Kinect sensor. The full RGBD information is used to detect
and locate AR markers. For static obstacle detection, we
only use the depth information of the sensor together with
three bumpers that are located in the front half of the robot.
Furthermore, the robot estimates its position by integrating
the wheel odometry and gyro information. Hence, no map of
the environment is built and the only known reference point
is the target location marker. This can lead to the problem
that if the odometry is faulty, the robot does not always find
the target location back. As a solution the robots fall back
into a search mode, if this is the case. Another solution could

1http://www.Turtlebot.com/
2http://www.ros.org/

be to implement a Northstar like navigation system, by pro-
viding a fixed frame of reference which is almost always
visible from any location.

Robot Vision and Communication
To enable visual robot-robot detection we equipped every
Turtlebot with six unique markers, which are oriented in a
way that at least one marker is visible from any angle. To
track and decode these markers we make use of a toolkit
called ALVAR, more specifically we use the ROS wrapper3

of this library. We use a customised bundle detection method
to determine the center of the detected robot dependent on
the decoded markers. Kalman filtering is applied to get bet-
ter and more stable readings and consequently a more ac-
curate estimate of the detected robots position, heading and
speed. These parameters are used again for collision avoid-
ance.

Communication is realised over Wi-Fi with a UDP con-
nection to each Turtlebot using the LCM library4. Even
though global communication would be possible, we limit
the communication, such that every robot listens only to its
own channel. To simulate local communication, the robots
can only communicate with another robot when it is in view
and in close proximity, i.e., less than one meter away.

Experiments
In this subsection we briefly describe the practical al-
gorithms needed for implementation of bee foraging on
swarms with extended resources. This clearly highlights the
main benefit of using these type of robots which is the pos-
sibility of implementation of very advanced algorithms in a
very convenient way.

Collision Avoidance In order to avoid robot to robot col-
lisions, we rely on the marker detection to predict positions
and speeds of the other robots. This information can be used
to efficiently compute a non-colliding speed vector as we

3http://wiki.ros.org/ar_track_alvar
4https://code.google.com/p/lcm/
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have developed previously in (Claes et al., 2012). In con-
trast to this previous approach, in which the robot-robot de-
tection was avoided by using a global reference frame and
broadcasting the positions to all robots via Wi-Fi, solely the
marker detection and the predictions using a Kalman filter
are used. This means that a few collisions still might oc-
cur due to failure to detect the markers of the other robots
and additionally, there are certain configurations in which
the robots cannot see each other due to the field of view of
the Kinect sensor, e.g., when two robots drive in a V-shape
towards each other, the field of view of the Kinect is too
narrow to detect the other robot.

As shown in the previous work of authors in (Alers et al.,
2014), multiple Turtlebots perform a foraging task, i.e.,
starting at the Hive (H) location and randomly exploring the
unknown environment for a specific Food (F) location. This
is shown in Figure 2. Another way of locating a food loca-
tion is by asking bypassing robots for a known food location,
which is done by simulating local communication over Wi-
Fi. When the source is found the robot starts to exploit this
source, i.e. driving from the food to the hive location un-
til the food is depleted or a better source is found. A video
showing this demonstration can be found in the online ma-
terial5.

Discussion
In summary, the robotic swarms with extended resources
can accomplish many tasks successfully. These swarms use
more sophisticated sensors like RGBD and VGA camera’s
to detect environmental features and can communicate with
each other using Wi-Fi, while they use vision processing to
simulate local communication.

Robots with extended resources have their up and down-
side. The downside of these robots are that they are bigger
than the robots with limited resources; they are more expen-
sive, as the sensors and computational units are more costly.
These type of robots run on an operating system that has a
steep learning curve. On the other hand, the upside of such
robots is that they are more versatile. It is much easier to ex-
tend the platform with new sensors by for example plugging
in an additional camera, or a dedicated control unit into the
usb port. The computational limitations are not restrictive,
e.g., image processing can be easily done without exhausting
any other resource. Last but not least, the software modules
can be easily reused or shared with the robotic community,
as all the modules are developed in a standardized way.

Next we study the swarms of robots with limited re-
sources which are simple, compact, small and relatively
cheap. These robots are very robust by using lots of proven
technologies (e.g., microcontrollers, basic sensors and actu-
ators)

5http://swarmlab.unimaas.nl/papers/
aamas-2014-foraging

Table 1: E-puck technical specification

Element Technical information
Processor dsPIC30F6014A @ 60 MHz ( 15 MIPS),

16-bit microcontroller with DSP core

Memory RAM: 8KB Flash: 144 KB

Motors 2 stepper motors with a 50:1 reduction gear

Camera VGA color camera with resolution of
640× 480 pixels

LEDs 8 red LEDs on the ring, green LEDs on the
body, 1 high intensity red LED in the front

Wireless Bluetooth for robot-computer and
Communication robot-robot communications,

Infrared for robot-robot communication

Swarm Robotics with Limited Resources
In this section we introduce the swarm robotics with lim-
ited resources approach, which refers to the swarms of rel-
atively small and cheap robots that have limited computa-
tion power (i.e., embedded micro-controllers), limited mem-
ory and very simple sensors and basic communications.
Such swarms are in contrast to the swarms with extended
resources that take advantage of powerful computers, ad-
vanced cameras and Wi-Fi communication capabilities.

The e-puck platform is an example of a robot with lim-
ited resources. e-puck is a small robot for educational and
research purposes, developed by the EPFL University (Mon-
dada et al., 2009). This robot is efficiently used in numerous
projects in the domain of swarm robotics and swarm intelli-
gence (e.g., works by Alers et al. (2011, 2013a,b); Lemmens
et al. (2011); Breitenmoser et al. (2010); Mondada et al.
(2009); Ranjbar-Sahraei et al. (2013b)). The main features
of the e-puck robot include, but are not limited to; a robust
design, flexibility for a large spectrum of educational activ-
ities, compact size, and rich on-board accessibilities (e.g.,
microphones, accelerometer and camera).

The e-puck hardware consists of different sensor types for
detecting visible or Infra Red (IR) light, sound, acceleration,
etc. The motors are the only actuators which are available
in e-puck. A microprocessor of PIC family with 8 KB RAM
memory assists the robot to get data from its sensors, analyse
it, and perform actions. The main hardware elements of the
e-puck robot are listed in Table 1.

As listed in the table, the on-board camera of the e-puck
has a resolution of 640 × 480 pixels, although due to the
limited resources, the robot is only capable of storing and
processing an image of 40 × 40 pixels.. It is placed at the
front of the e-puck, 2.7 cm above the floor. With this cam-
era, objects that are placed on the floor can be detected at a
minimum distance of 7.4 cm. The camera angle is approxi-
mately 40◦, and at this minimum distance, objects of 5.1 cm
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(a) (b) (c) (d)

Figure 3: Detectable features presented in (Alers et al.,
2013b) (a) Landmarks with barcode. (b) QR-code level 3.
(c) Robot LEDs. (d) Robot orientation pattern.

Figure 4: Scenario for validation of robotic vision.

width can be fully monitored.

Robot Vision
Alers et al. (2013b) explored several visual features that can
be used for acquiring information from the environment by a
robot with limited computational abilities. In this work, for
detecting key locations in the environment, such as corners
in a maze, the usage of specific landmarks for these locations
is investigated. Each landmark consists of an upper ring with
a solid color, so that it can be detected from a distance, and
on the lower part a unique barcode for keeping track of the
landmark numbers, as can be seen in Figure 3(a).

Furthermore, the possibility to detect markers with an
even higher data density, QR-codes as in Figure 3(b), are
explored. The challenge in the detection of these two-
dimensional codes, lies in analysing and processing the cam-
era data with the limited processing and memory resources
that are available in the robotic platform.

Finally, the most common feature already available in ev-
ery swarm robotic setting is explored: the presence of an
other robot. It’s always favourable to detect the relative dis-
tance and orientation to other robots in respect of one’s own
position. Therefore, the available LEDs on the robot provide
a very good feature for robot detection from a distance, see
Figure 3(c). Moreover, a specific gradient pattern for nearby
robot detection, as shown in Figure 3(d), is designed. This
pattern results in a very accurate orientation and distance de-
tection.

(a) (b)

Figure 5: e-puck robot with improved local communication
(a) An e-puck robot as used in the experiments. (b) The
XBee communication extension board.

A video of this performed experiment on a validation sce-
nario as shown in Figure 4 can be found online6, including
the intermediate image data from the robot.

Communication
Direct Communication The e-puck robots contain 4
types of sensors with which they have to make sense of the
world around them. Namely, 8 IR sensors, 1 camera, 3 mi-
crophones, and an accelerometer. Of these sensors, we only
use the 8 IR sensors for proximity detection. Additionally,
they have two main communication possibilities, namely,
IR communication and (limited) Bluetooth communication.
The former is prone to interference, its operation is CPU in-
tensive, and as such is only viable for local short-message
communication. The latter is limited to 3 simultaneous con-
nections and setting up a single connection can take as long
as 10 s. Moreover, 3 simultaneous connections can only be
set up in the form of 1 master and 3 slaves. This severely
limits communication possibilities.

In order to overcome the shortcomings of the current sen-
sors, we were inspired by the communication module on
the AdMoVeo robot designed by Alers and Hu (2009) and
have designed an XBee extension board for the e-puck to
improve local communication. Its design features are ro-
bustness, speed, low power usage, and ease of use. Fig-
ures 5(a) and 5(b) shows the e-puck equipped with the ex-
tension board and the extension board alone, respectively.
XBee ensures reliable, fast, local, peer to peer communi-
cation. Moreover, it also provides the possibilities for cre-
ating a mesh network between multiple XBee chips. This
opens up research possibilities in fields such as Mobile Ad-
hoc Routing.

Stigmergic Communication Inspired by the stigmergic
type of communication in ant colonies, robots can get ben-
efits of stigmergy in communication-limited environments.
However, despite of a few reports of using chemicals or ra-
dio frequency identification tags in robotic experiments by

6http://swarmlab.unimaas.nl/papers/
adaptive-2013-demo
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Figure 6: Darkroom with glow-in-the-dark floor, where the
e-puck robots circle around and emit UV light onto the floor.

Fujisawa et al. (2008); Herianto et al. (2007); Johansson and
Saffiotti (2009), due to difficulties in implementation and
limited extendibility, this approach did not provide sufficient
applicability in swarm scenarios. Therefore, motivated by
the technique proposed by Kronemann and Hafner (2010),
we have designed a test-bed which provides stigmergic com-
munication to the robots as shown in Figure 6.

In this setting the floor is covered by a glow-in-the-dark
foil (i.e. a foil covered by phosphorescent material which
absorbs UV light and re-emits the absorbed light at a lower
intensity for up to several minutes after the original excita-
tion), and robots are equipped with UV-LEDs pointing to-
ward the floor. Therefore, as robots move around they leave
glowing trails behind themselves. Furthermore, for detec-
tion of these trails, in contrast to the simple method used
by Kronemann and Hafner (2010), in which photo-sensors
were used to detect glowing trails, we take advantage of the
e-puck on-board camera. By capturing an image and apply-
ing a green filter to it, we extract the exact pattern of green
trails in the image. The patterns in the image can be used to
measure the presence of trail and also its density over differ-
ent locations. Finally, the IR sensors are used for obstacle
avoidance7.

Experiments
In this subsection we describe the experiments on robotic
swarms with limited resources, for two different scenarios
of bee foraging and environment coverage, highlighting the
benefits of using these type of swarms and practical ap-
proaches to overcome their limitations.

Bee Foraging The bee foraging experiments show the ef-
fectiveness of the embodied foraging behaviour in a swarm
of e-pucks. In Figure 7, we present the stages that the exper-
iment goes through. The goal of the experiment is to show
that each separate behaviour actually works in an embodied
swarm. Therefore, the experiment starts with a swarm of

7More technical details available in http://swarmlab.
unimaas.nl/stico/indoor-experiments.

(a) (b) (c) (d)

Figure 7: The four stages of Biomimicry Foraging (a) All
robots start at the nest location. (b) The robots randomly
disperse trough the environment looking for a food location.
(c) A robot that has found food returns to the nest location
by the shortest possible path. (d) The food location is com-
municated to other robots and they start to exploit this food-
source.

e-pucks surrounding the hive, see Figure 7(a). Figure 7(b)
shows the stage in which a portion of the swarm starts forag-
ing while others remain around the hive, waiting for infor-
mation to exploit. Figure 7(c) presents the situation in which
an exploring e-puck finds food and returns to the hive by us-
ing its constructed PI vector. Once returned to the nest, the
e-puck communicates its PI findings by means of a virtual
dance. The hive collects these experiences and offers these
to recruits. Finally, Figure 7(d) gives the situation in which
other e-pucks communicated with the hive and have attained
the PI vector towards the food source and are traveling to the
food source guided by this PI vector. A demonstration movie
can be found online8.

Environment Coverage The multi-robot coverage exper-
iment can be used for various monitoring, rescue, and pa-
trolling missions. Ranjbar-Sahraei et al. (2012b) proposed
an stigmergic coverage approach called StiCo which does
not need a priori knowledge of the environment, communi-
cation among robots or distance measurements. StiCo works
based on a very simple motion policy: Each robot circles
around with a fixed radius and marks its path with evap-
orable markers, which denote the borders of robot’s terri-
tory. Simultaneously, if a robot detects a trail while circling
around, it changes its circling direction immediately. This
behavior is illustrated in Figures 8(a)-8(c). Ranjbar-Sahraei
et al. (2012a) used computer simulations to show that StiCo
is very simple, but efficient, robust and even extendable. An
illustration of the StiCo coverage approach with real robots
is shown in Figures 8(d)-8(f) (Ranjbar-Sahraei et al., 2013b).

Discussion
In summary, the robotic swarms with limited resources can
accomplish many tasks successfully. These swarms can
use their simple cameras to detect environmental features
(shown in Figure 3) and they can communicate using IR

8http://swarmlab.unimaas.nl/papers/
bnaic2011demo/
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(a) (b) (c)

(d) (e) (f)

Figure 8: StiCo coordination principle: (a) robots circle
around. (b) the right robot detects pheromone. (c) the right
robot changes circling direction. (d)-(f) Vision-based Stig-
mergic Coverage using glowing trails.

communication or XBees (shown in Figure 5). Their small
size makes it possible to do experiments in very compact
environments (e.g. the testbed shown in Figure 6).

Robotic swarms with limited resources have up and
downsides. The upside of these kind of robots is that they
are very robust by using lots of proven technologies (e.g.,
microcontrollers and basic sensors and actuators). They are
also relatively cheap to make which for a large swarm could
be a more realistic scenario. The downside of using lim-
ited resources is that the possibilities of the robotic system
is constraint by the hardware platform and the computational
possibilities. Also the use of relatively basic sensors limits
these kind of platforms in perceiving the environment and
interacting or communicating with it. It is also hard to ex-
tend the platform with new sensors, which would require
some electrical engineering.

We experienced that there are some difficulties, in do-
ing intensive experiments with these swarms: These robots
don’t contain a modular structure such that in terms of dam-
age, one can replace the damaged part with a new one. Be-
sides, the programmers should usually code all the require-
ments (e.g, image processing modules) which makes it very
time consuming to implement all the requirements and hard
to debug.

Concluding Remarks
In this paper we investigated two fundamental problems in
swarm robotics, the Foraging and Coverage, from a multi-
robot coordination perspective. For the former problem
a bee-inspired solution was introduced while pheromone-
based communication was used to address the latter prob-
lem. For implementation of such problems on real world
robotic swarms first a robotic platform with extended re-
sources, Turtlebot, was introduced and the practical require-
ments to implement the foraging algorithm on a swarm of
these robots were discussed. Afterwards, a robotic plat-

form with limited resources, e-puck, was introduced. It was
shown how limitations of these kind of robots such as limi-
tation in computational power and low quality vision can be
overcome; possible extensions for direct robot-robot com-
munication and the indirect stigmergic communication were
considered.

Although the main disadvantage for robots with extended
resources is that they are still more expensive and bigger in
size and the main disadvantage of the robots with limited
resources is that their possibilities are too limited. One can
argue that in the near future these argumentations are not
relevant anymore. From the current development of System
on a Chip (SoC) controllers, used for mobile phones and
tablets, one can already see that these low power processors
increase processing strength every year, are not really costly
and are widely available. Also several sensors and RGBD
cameras are miniaturised and will eventually turn up inside
a tablet or smartphone. These sensors and controllers will
suit the needs of real swarm robotic applications and vali-
date the current use of robots with both limited and extended
resources within the field of swarm robotic research.

Considering the pros and cons of each type of studied
robotic swarm, one can think of heterogeneous swarms that
employ both type of robots in the same mission. This is
already explored by the authors in (Ranjbar-Sahraei et al.,
2013a) and is still one of the main directions for their future
works.
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Abstract

Robot experiments using real cultured neural cells as con-
trollers are a way to explore the idea of embodied cognition.
Real cultured neural cells have innate plasticity and a sensory
motor coupling is expected to develop the neural circuit. We
designed a system in which a robot moving in a real environ-
ment is controlled by cultured neural cells growing on a glass
plate attached to a High-Density Microelectrode CMOS Ar-
ray(HDMEA). The IR sensors on a robot will feedback onto
the neural cells through HDMEA and the activity of the neu-
ral cells will be read again by HDMEA and sent back to de-
termine the speed of the robot. Most of the previous works
have used the relatively low-density multi-electrode array for
recording and stimulating the neural assembly. Our system
has the advantage of a high-density spatial and temporal ar-
ray so that we can precisely detect which neurons get fired
and suppressed. A preliminary finding from the experiment
is that synchronized neural activation is retained in cultured
neurons even after detached from a robot.

Introduction
Recently, it became easier and popular to study the coupling
between a robot and a network of cultured neural cells. In
those studies, the sensory information coming from the mov-
ing robot is used to stimulate the neural cells, and the re-
sulting activities of those determine the speed of the motors
driving the robot. This is what is called a ”closed loop” ex-
periment. We believe that it is critical to conduct such closed
loop experiment for revealing biological memory and adapt-
ability with respect to embodiment. Behavior is not a one
way function of sensory inputs but behavior assimilates by
itself.

For example, Bakkum et al. (2008) have proposed a new
method to train a biological neural cells to achieve a de-
sired pattern for multiple stimulus. Kudoh et al. (2008) have
proposed another learning method using a cultured neural
system that incrementally learns to respond in a particular
way to a particular input. One drawbacks of those stud-
ies is that their microelectrode array has not enough space
resolution, so that it is difficult to stimulate/detect a sin-
gle neuronal state. The other drawback is giving an exter-
nal evaluation function that enables a coupled neuro-robot

system to work. Such evaluation function should be de-
veloped from the neuro-robot itself, namely, we have to
develop neural self-organization of sense-making behavior
with a mobile body. In order to overcome those drawbacks,
we use a recently developed high density CMOS array (HD-
MEA) capable of detecting the activity of individual neurons
with high precision. With HMDEA, we can measure the
spatio-temporal neural pattern with a higher precision and
reveal how neural plasticity and memory can self-organize
the sense-making behavior in a given environment.

Method
A simplest task we seek here is avoiding or reaching behav-
ior of the robot without putting further constraints.

The main components of this system are the HDMEA
monitoring the culture of neural cells, the robot in its arena
and the interface connecting them. The system gathers the
signal from the robot, stimulates the neural cells by using
HMDEA and sends the motor output signal to the robot.
This way, the robot and the neural cells form a closed loop.
The HDMEA we used in this study provides a higher spatio-
temporal resolution compared to previous studies [Frey et al.
(2010)]. Thus we can monitor all the neural activities by
using less than 126 cultured neural cells and the adequate
electrode channels. For the moment, we can stimulate at
most two cells at a time out of 126 channels available. The
sampling rate of HDMEA is 20kHz. A software MeaBench
developed by D. Wagenaar [Wagenaar et al. (2005)] is used
for recording and detecting spikes and controlling the whole
system.

We used Elisa-3 (Manufactured by CGtronic) as a mobile
robot. Elisa-3 is a circular small robot of 2.5 cm radius and
it has two independently controllable wheels. In this exper-
iment, we use the front right and front left distance sensors
as sensory stimulation for the neural cells.

We chose two excitatory neurons as left or right input-
neuron for receiving the stimuli. Stimulation to the neu-
ral cells is determined by the in-take sensor inputs of this
robot. We designed it as that the closer a robot approaches
a wall and the higher the sensory inputs become, the more
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