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Abstract. Classi®er systems constitute a general model of low-level rule-based

systems that are capable of environmental interaction and learning. A central

characteristic and drawback of the traditional approaches to learning in such systems

is that they exclusively work on the rule level, without taking into consideration that

the individual rules possess a very complex activity behaviour. This article investigates

an alternative, action-oriented perspective of learning in classi®er systems which does

not suŒer from this drawback. According to this perspective learning is realized on the

®ner action level instead of the coarser rule level. Comparative theoretical and

experimental results are presented that show the advantages of the action-oriented

over the traditional perspective.
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1. Introduction

1.1. Classi®er systems

The foundations for classi®er systems (CSs) were laid by Holland (1975) within the

frame of his theoretical study of genetic algorithms, and the ®rst CS was introduced by

Holland and Reitman (1978). Since then many diŒerent types of CSs have been

described in the literature (for an overview see Goldberg 1989, Booker et al. 1989,

Wilson and Goldberg 1989). Generally, CSs are parallel, message-passing, rule-based

systems that are capable of environmental interaction and of learning through credit

assignment and rule discovery. They are made up of four structural parts :

E An input interface which consists of at least one detector providing information

about the environment in the form messages.

E An output interface which consists of at least one eŒector enabling the system to

interact with the environment.

E A classi®er list # which consists of a number of rules called classi®ers. Each classi®er

C
i
is of the form Cond

i"
, ¼ , Cond

in
}Act

i
where the Cond

ij
and the Act

i
are strings

of ®xed length L over ²0, 1, g ´ called condition string and action string,

respectively. Associated with each classi®er is a speci®c value called its strength.

E A message list - which contains the messages sent by the detectors and the

classi®ers, where each message m is a string of ®xed length L over ²0, 1´.
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A classi®er C
i
is said to be satis®ed, if there is tuple T ¯ (m

"
, ¼ , m

n
) ` - n of messages

such that for each j ` ²1, ¼ , n´ Cond
ij

is matched by m
j
, where matching is done

position by position and `g ’ acts as a `don’t care ’ symbol. T implies a speci®c action

a in form of a new message according to the following simple mechanism. Let

a
k

` ²0, 1, g´ be the symbol on position k of the action string Act
i
, and let l

k
` ²0, 1´

be the symbol on position k of the message that matches Cond
i"

(the so-called pass-

through condition). Then the action a implied by T has on position k the symbol a
k
, if

a
k

¯ 1 or a
k

¯ 0, and the symbol l
k
, if a

k
¯ g (k ¯ 1, ¼ , L). The generation of new

messages is illustrated in Figure 1. As this ®gure shows, diŒerent message tuples can

imply diŒerent messages. W ith that, a classi®er is capable of a highly diŒerentiated

activity behaviour.

CSs are active on three functional levels : the performance level, including activities

like environmental interaction and message processing ; the credit-assignment level,

including the activity of learning by strength modi®cation ; and the discovery level,

including the activity of learning by discovering new classi®ers. The activities at these

three levels are concerted in the following major execution cycle :

1. Activation of the input interface : the detector messages are added to the message

list.

2. Activation of the classi®er list : a competition runs between the satis®ed classi®ers

and only the winners are allowed to produce new messages.

3. Activation of the output interface : the system interacts with its environment in

dependence on the new messages.

4. Credit assignment : strength-update rules are applied to adjust the classi®er

strengths such that they re¯ect the classi®ers’ relevance to goal attainment.

5. Rule discovery : a genetic algorithm is applied in order to create new (more

useful) and to replace old (useless) classi®ers.

6. Message list updating : the contents of the message list is replaced by the new

messages.

The repeated execution of this cycle makes up the overall activity of a CS.

1.2. The traditional perspective of learning

There are two diŒerent learning schemes for credit assignment in CSs that have been

proposed in the literature : the bucket brigade (BB for short ; e.g. Booker 1982,

Goldberg 1983, Holland 1985, Riolo 1988) and the pro®t-sharing plan (PSP for short ;

Holland and Reitman 1978, Grefenstette 1988). The fundamental diŒerence between

these two schemes is the following : the BB is an incremental learning algorithm

Figure 1. Generation of new messages.
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according to which the strengths are updated each cycle ; against that, the PSP is an

episodical learning algorithm according to which the strengths are only updated at the

end of each episode (epoche, trial), where an episode is de®ned as the time interval

between the receipts of two successive external rewards."
The BB in its standard form works as follows.# If a competition runs, each satis®ed

classi®er makes a single, action-unspeci®c bid Bid
i
,

Bid
i
¯ k[Str

i
[Spec

i
(`BB without support ’) (1)

or

Bid
i
¯ k[Str

i
[Spec

i
[Sup

i
(` BB with support ’) (2)

where b is a small constant called risk factor, Str
i
is C

i
’s strength, Spec

i
is C

i
’s speci®ty

(de®ned as the number of 0s and 1s in the condition part of C
i

divided by the length

thereof ), and

Sup
i
¯ 3

m:
d
T

`4

i(m
`
T)

Int(m ) (3)

is the support for C
i
, where 4

i
is the set of all message tuples that satisfy C

i
and Int(m),

the intensity of the message m , is a value equal to the bid according to which m was

sent.

The probability that a bidding classi®er wins the competition is given by

Bid
i

3
Ck

`3 Bid
k

(4)

where 3 is the set of all satis®ed classi®ers. A winning classi®er produces the messages

implied by the message tuples that satisfy it, and pays its bid to its predecessors, that

is, to the classi®ers that sent the messages contained in these tuples. Formally, this

leads to the following strength modi®cations :

Str
i
¯ Str

i
®Bid

i
(5)

and

Str
k

¯ Str
k
­

Bid
i

r0
i
r

c C
k

` 0
i

(6)

where

0
i
¯ ²C

k
` # : d T ` 4

i
d m ` T (C

k
sent m)´ (7)

is the set of the predecessors of C
i
. Additionally, if an external reward is received from

the environment, then it is equally distributed among the classi®ers that sent the

eŒector-activating messages.

The standard PSP works as follows.$ A satis®ed classi®er C
i

competes for its right

to ®re by making the bid

Bid
i
¯ b[Str

i
(8)

where b is the risk factor and Str
i
is the strength of C

i
. Analogous to the BB, a winning

classi®er sends all messages that are implied by the message tuples satisfying it. At the

end of each episode (i.e. whenever an external reward Ext is received), the strength Str
i

of each classi®er C
i

that was active at least one times during the episode is modi®ed

according to

Str
i
¯ Str

i
®Bid

i
­b[Ext (9)
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Approaches to a synthesis of BB-type and PSP-type learning are Grefenstette’s

(1988) system called RUDI and W eiû’s (1994) hierarchical chunking algorithm.

1.3. An action-oriented perspective

A central characteristic and a basic drawback of the traditional learning approaches

is that their bidding, ®ring and strength adjustment processes exclusively work on the

classi®er level, without taking into consideration that the individual classi®ers possess

a very complex activity behaviour.% In order to cope with this problem, in previous

work it has been proposed to consider learning in CSs from an alternative, action-

oriented perspective (Weiû 1991, 1992). This perspective is well known in the ®eld of

arti®cial neural networks and recently has been also applied to multi-agent systems

(Weiû 1993a, 1993b). Here we present the details of the action-oriented perspective of

learning in CSs. Three variants of the standard BB and the standard PSP are described

which strictly operate on the action level in the sense that their bidding, ®ring and

strength adjustment processes are guided by the actions of the classi®ers (Section 2).

These variantsÐthe action-oriented bucket brigade 1 (ABB1), the action-oriented

bucket brigade 2 (ABB2), and the action-oriented pro®t-sharing plan (APSP)Ðexplicitly

take into consideration that a classi®er is capable of carrying out diŒerent actions and

that diŒerent actions carried out by a classi®er can have diŒerent relevance to goal

attainment. In other words, the ABB1, the ABB2 and the APSP aim at learning the

goal relevance of the actions instead of the goal relevance of the classi®ers. Since the

goal relevance learnt is also used for guiding the genetics-based discovery of new rules,

rule discovery itself works on the principle of action orientation. A theoretical and

experimental comparison of the traditional and the action-oriented perspective is

provided (Section 3). The article closes with a summary and with suggestions on future

research directions (Section 4).

2. Action-oriented learning

2.1. The algorithm ABB1

The central quantity underlying the action-oriented perspective of learning in CSs is

that of the goal relevance of an action. According to the ABB1, this quantity is

estimated as follows. Let 4
i

be the set of all actual message tuples T that satisfy the

classi®er C
i
. First, C

i
determines the set ! poss

i
¯ ²a"

i
, ¼ , aki

i
´ (k

i
` N) of all its possible

actions (i.e. of all actions that could be carried out by it). This set is speci®ed by

! poss
i

¯ ²a : d T ` 4
i
(T implies a)´. (10)

Then C
i

determines for each of its possible actions aj
i
` ! poss

i
the set - j

i
of action-

relevant messages (i.e. of all messages that make aj
i

possible). - j
i

is given by

- j
i
¯ ²m : d T ` 4

i
(T implies aj

i
g m ` T )´ (11)

(Each m ` - j
i

corresponds to a speci®c action that was carried out by some classi®er

during the previous cycle or to a detector message.) Finally, C
i

calculates for each

aj
i
` ! poss

i
the estimated goal relevance Estj

i
by

Estj
i
¯ 3

m
`- j

i

Int(m) (12)

where Int(m ) is the intensity of the message m .
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Table 1

Classi®er list #

C
"

¯ g1g1g , g1011 } 01g01

C
#

¯ g111g , 010g0 } g0011

C
$

¯ 0g0gg , 0g111 } 0gg0g
C

%
¯ 0gg11 , g1g00 } 110g1

I

If the total number of possible actions exceeds the message-list size, then a

competition runs between all the possible actions as follows. C
i

makes for each

aj
i
` ! poss

i
a bid Bid j

i
according to

Bid j
i
¯ b[Str

i
[Spec

i
[Estj

i
(13)

where b is a constant called risk factor (bid coe�cient), Str
i

is the C
i
’s strength, and

Spec
i
is C

i
’s speci®city. The winning actions are selected with probability proportional

to the bids, and a classi®er C
i

is allowed to carry out its action aj
i
` ! poss

i
is given by

Bid j
i

3
Ck

`3 3
al
k

`!poss
k

Bid l
k

(14)

where 3 refers to the set of all satis®ed classi®ers. Each action a classi®er C
i
is allowed

to perform is called an actual action, and the set of all actual actions of C
i

is denoted

by ! act
i

(! act
i

X ! poss
i

).

Each classi®er C
i

pays for each of its actual action aj
i
` ! act

i
the corresponding bid

Bid j
i

in equal shares to the action-relevant predecessors, that means, to all classi®ers

that sent the action-relevant messages contained in - j
i
. Formally, this leads to the

following strength modi®cations :

Str
i
¯ Str

i
®Bid j

i
(15)

and

Str
k

¯ Str
k
­

Bid j
i

r0 j
i
r

c C
k

` 0 j
i

(16)

where
0 j

i
¯ ²C

k
` # : d m ` - j

i
(C

k
sent m)´ (17)

is the set of action-relevant predecessors with respect to aj
i
. For an illustration of the

estimated goal relevance of a classi®er’s action, consider the classi®er and the message

list depicted by the Tables 1 and 2, respectively. Taking a closer look on classi®er

C
"
, for instance, one ®nds that the set of matching tuples satisfying it is given by

4
"

¯ ²(m
"
, m

"
), (m

#
, m

"
), (m

$
, m

"
), (m

%
, m

"
)´. C

"
has two possible actions, a"

"
¯ 01001

and a#
"

¯ 01101. The set of action-relevant message tuples with respect to a"
"

and a#
"

is

²(m
"
, m

"
)´ and ²(m

#
, m

"
), (m

$
, m

"
), (m

%
, m

"
)´, respectively, and the set of action-relevant

messages with respect to a"
"

and a#
"

is - "
"

¯ ²m
"
´ and - #

"
¯ ²m

"
, m

#
, m

$
, m

%
´,

respectively. Consequently, C
"

estimates the goal relevance of a"
"

and a#
"

as Est"
"
¯

Int(m
"
) ¯ 90 and Est#

"
¯ 3%

i="
Int(m

i
) ¯ 360, respectively. (The possible actions of the

classi®ers C
"

to C
%

and their estimated goal relevances are summarized in Table 3.

Note that a"
"

¯ a"
$
, but Est"

"
1 Est"

$
; this shows that under the ABB1 the same action

can be diŒerently judged by diŒerent classi®ers.)
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Table 2

Message list -

message intensity

m
"

¯ 01011 90

m
#

¯ 11110 130

m
$

¯ 01111 60

m
%

¯ 11111 80

m
&

¯ 01001 150

m
’

¯ 00000 40

m
(

¯ 01000 50

m
)

¯ 00011 110

2.2. The algorithm ABB2

According to the ABB2, which may be considered as a re®nement of the ABB1, a

classi®er does no longer have a single, scalar-valued strength, but an array of strength

values each indicating the estimated goal relevance of a speci®c action. In other words,

now a classi®er C
i
has for each of its possible actions aj

i
` ! poss

i
one strength Estj

i
called

estimated goal relevance of aj
i
. The ABB2 retains the basic working method of the

ABB1, but realizes bidding, ®ring, and strength modi®cation in a re®ned action-

oriented way as follows. If a competition runs, then each satis®ed classier C
i
makes for

each of its possible actions aj
i
` ! poss

i
an action-speci®c bid Bid j

i
,

Bid j
i
¯ b[Est j

i
(18)

where b is the risk factor and Est j
i

is C
i
’s estimation of the goal relevance of aj

i
.

The array-valued strengths are modi®ed in a bucket-brigade style as follows. First,

a classi®er C
i

that wins the competition with respect to aj
i

(the probability for that is

also given by equation (14)) decreases the estimated goal relevance Est j
i

by the amount

of the bid Bid j
i

and pays for each action-relevant message m ` - j
i

a fraction of this bid

to the classi®er C
k

that sent m . Second, assuming that the message m corresponds to

the action al
k

(performed during the previous cycle), the classi®er C
k

increases Est l
k

by

the amount received from C
i
. Formally :

Est j
i
¯ Est j

i
®Bid j

i
(19)

and

Est l
k

¯ Est l
k
­

Bid j
i

r- j
i
r

c al
k

` - j
i

(20)

where - j
i

is the set of all action-relevant messages as speci®ed by equation (11).

It has to be mentioned that there are two other approaches to learning in CSs that

employ multiple classi®er strengths. First, Huang’s (1989a, 1989b) context-array

bucket brigade ; roughly, the idea underlying this algorithm is to associate with each

classi®er a strength array of variable length which is used for estimating the goal

relevance (usefulness) of a classi®er in dependence on the speci®c contexts under which

it could ®re. And second, Riolo’s (1990) look-ahead bucket brigade ; here the idea is to

associate with each classi®er three strength values which are used for building up an
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Table 3

Estimated goal relevance versus support

classi®er action estimation support

C
" a#

"
¯ 01101

a"
"

¯ 01001

Est#
"

¯ 360

Est"
"

¯ 90 Sup
"
¯ 360

C
# a#

#
¯ 00011

a"
#

¯ 10011

Est#
#

¯ 150

Est"
#

¯ 300 Sup
#
¯ 360

a"
$

¯ 01001 Est"
$

¯ 210

C
$ a$

$
¯ 01000

a#
$

¯ 00000

Est$
$

¯ 110

Est#
$

¯ 100 Sup
$
¯ 410

a%
$

¯ 00001 Est%
$

¯ 170

C
%

a"
%

¯ 11011 Est"
%

¯ 310 Sup
%
¯ 310

internal model of the CS’s environment. Although both the context-array BB, the

look-ahead BB and the ABB2 aim at an improved rating of the role each classi®er

plays in solving a given problem, they do so in completely diŒerent ways ; in particular,

they entirely diŒer in their use of the multiple strengths and in their bidding, ®ring and

strength adjustment mechanisms.

2.3. The algorithm APSP

The APSP retains the basic working method of the PSP, but employs array-valued

strengths in the same way as the ABB2 does. If a competition runs, then the satis®ed

classi®ers make action-speci®c bids according to equation (18) and the winning

classi®ers perform their actions. At the end of each episode, the estimated goal

relevance Est j
i

of each action aj
i
that was performed during any cycle of the episode is

modi®ed as follows :

Est j
i
¯ Est j

i
®b[Est j

i
­b[Ext (21)

where b is the risk factor and Ext is the external reward obtained at the end of the

episode.

A comparison of the PSP and the APSP, as well as of the BB and the ABB1}ABB2,

shows that the standard and the action-oriented algorithms signi®cantly diŒer from

each other in their bidding, ®ring and strength modi®cation mechanisms :

E Bidding. According to the standard algorithms, each satis®ed classier C
i
makes a

single action-unspeci®c bid. Interestingly, this does even hold for the BB with

support, which employs the concept of message intensities in a way similar than

the ABB1 does (see equations (3) and (12)). The point is that the message

intensities are used for completely diŒerent purposes : in order to calculate a

quantity which is taken as a ` vote for a speci®c action of a classi®er ’ in the case of

the ABB1 ; and in order to calculate a quantity which is taken as a ` vote for the

activation of a classi®er ’ in the case of the BB with support. This diŒerence is

illustrated by Table 3, which bases on the data of Tables 1 and 2. The support of

a classi®er does not provide any information about the classi®er’s possible
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actions. Against this, a classi®er’s estimate of the goal relevance of its actions is

very diŒerentiated. For instance, C
"

estimates that the goal relevance of a#
"

is four

times as high as the goal relevance of a"
"
, C

#
’s estimation of the goal relevance of

a"
#

is twice as high as its estimation of the goal relevance of a#
#
, and C

$
makes four

diŒerent estimations ranging from 100 to 210. Furthermore, whereas the support

for diŒerent classi®ers is equal whenever they are matched by the same messages

(as is the case for C
"

and C
#

which both are matched by the same messages (as is

the case for C
"

and C
#

which both are matched by m
"
, m

#
, m

$
and m

#
), these

classi®ers’ estimations of their possible actions may signi®cantly diŒer from each

other. (There is only one special case where the support is as expressive as the

estimated goal relevance : if a classi®er can perform only one action. See classi®er

C
%

for an example of this trivial case.)

E Firing. According to the standard approach, there is no distinction between

possible and actual actions, and there is no quantity indicating which action

should be performed and which not. Hence, after the bidding process a winning

classi®er simply performs all actions, namely, one for each message tuple that

satis®es it. (This ` all-or-nothing ’ ®ring may signi®cantly impact the learning

quality (Riolo 1989, Weiû 1991) and therefore is often reduced to a ` one-or-

nothing ’ ®ring.)

E The standard algorithms make no distinction between action-relevant and

action-irrelevant predecessors, and a winning classi®er simply distributes its bid

among all its predecessors, that is, among all classi®ers whose messages (sent at

the previous time step) match at least one of its condition strings. Compared to

the action-oriented variants, strength distribution is done in a ` brute force

manner ’, regardless of which actions are advocated by the predecessors.

The next section provides an analysis of the eŒects of these diŒerences.

3. Analysis

3.1. Theoretical considerations

3.1.1. Results, I : Statistical measures

Given a classi®er list # , a probabilistic measure which shows the importance of an

action-oriented perspective of learning is the expected number E# of diŒerent actions

that a classi®er theoretically can perform, i.e. that a classi®er can perform if the

appropriate messages are available. This measure is an approximation of the number

of diŒerent actions that a classi®er C
i
` # performs during a run of the CS. (This

number is not known a priori but depends on the contents of the message list during

the run.) In order to be able to calculate E# , it is useful to introduce a special schema

(Holland 1975) called action schema. Assume that a classi®er C
i

has the symbol

b
j
` ²0, 1, g´ on the position j of its pass-through condition and the symbol a

j
` ²0, 1, g´

on the position j of its action part ( j ¯ 1, ¼ , L). Then the action schema of C
i

is

de®ned as

©c
"
¼ c

L
ª ¯ ²s

"
¼ s

L
` ²0, 1´L: ( c

j
` ²0, 1´ U s

j
¯ c

j
) c j ¯ 1, ¼ , L´ (22)

where

c
j
¯ a

j
if a

j
` ²0, 1´

and

c
j
¯ b

j
if a

j
¯ g
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Table 4. E# for diŒerent qs and Ls

q L ¯ 6 L ¯ 8 L ¯ 10

0±0 1 ±00 1±00 1 ±00

0±1 1 ±06 1±08 1 ±10

0±2 1 ±26 1±36 1 ±48

0±3 1 ±67 1±99 2 ±36

0±4 2 ±43 3±37 4 ±41

0±5 3 ±81 5±96 9 ±31

0±6 6 ±32 11±70 21±64

0±7 10 ±94 24±29 53±93

0±8 19 ±45 52±33 140±74

0±9 35 ±16 115±19 377±38

1±0 64 ±00 256±00 1024±00

For instance, the action schema of the one-condition classi®er

0gg1gg01}g1g00g1g
is given by

©01g00g11ª ¯ ²01000011, 01000111, 01100011, 01100111´

An action scheme is a formal speci®cation of the set of all actions that a classi®er

theoretically can perform. The number of elements contained in an action scheme is

what can be called the action potential (AP for short) of a classi®er. Let p denote the

probability for the occurrence of a non-g symbol on a position of a condition}action

string, q ¯ 1®p the corresponding probability for a g symbol, L the message length,

and P [AP ¯ k ] the probability that the action potential of a classi®er is equal to k ` N.

Because the action potential of a classi®er always is equal to 2i for some i ` ²0, ¼ , L´

and because c
i
always is equal to g with probability q# for each i ` ²1,¼ , L´, it follows

that

P [AP ¯ k] ¯

1

2
3

4

0Li 1 (q#)i( p#­2pq)LÕi for k ¯ 2i and i ` ²1, ¼ , L´

0 otherwise

(23)

Now the approximating measure E# can be calculated by

E#
¯ 3#

L

i="

iP [AP ¯ i ] ¯ 3
L

i=!

2iP [AP ¯ 2i]

¯ 3
L

i=!

2i0L

i 1 (q#)i( p#­2pq)LÕ i¯ (1­q#)L (24)

Table 4 illustrates the approximating measure E# for diŒerent values of L and q. As

this table shows, even for standard con®gurations E# is clearly greater than one (e.g.

E#
¯ 5 ±96 for q ¯ 0±5 and L ¯ 8) and quickly grows for increasing values of q and L .

Another informative measure in view of the action-oriented perspective of learning

in CSs is the probability P [AP " 1] that a classi®er theoretically can perform more
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than one action. From the above considerations it follows that this probability is given

by

P [AP " 1] ¯ 1® (1®q#)L (25)

where q and L are de®ned as above. Again, even for standard con®gurations this

probability is considerably high (e.g. P [AP " 1] ¯ 0 ±9 for q ¯ 0 ±5 and L ¯ 8).

3.1.2. Results, II : BB versus ABB1

Despite the fundamental diŒerences between the BB with support and the ABB1, it is

possible to relate the learning behaviour of these algorithms :

Proposition 1. Let PBB[aj
i
` ! act

i
] denote the probability given by expression (4) and

PABB"[aj
i
` ! act

i
] the probability given by expression (14).

(i) If the action potential of each classi®er is equal to one (i.e. each classi®er C
i

theoretically can perform exactly one action a"
i
) then

PABB"[a"
i

` ! act
i

] ¯ PBB[a"
i

` ! act
i

] (26)

(ii) If the action potential of a classi®er is greater than one (i.e. a classi®er C
i

is

capable of performing more than one action) and the sets of action-relevant

messages are disjoint (i.e. - p
i

f - q
i

¯ W cp, q with p 1 q), then

PABB"[aj
i
` ! act

i
] ¯ PBB[aj

i
` ! act

i
][

Est j
i

3
aji

`!poss
i

Est j
i

(27)

Proof. Part (i) immediately follows from the fact that in this case Est"
i

¯ Sup
i

does

hold. Part (ii) requires more eŒort. From the disjointness of the sets - j
i

it follows that

3
aji

`!poss
i

Est j
i
¯ 3

aji
`!poss

i

3
m

`- j
i

Int(m) ¯ 3
m

`e
j
-j

i

Int(m) ¯ Sup
i

and therefore

3
aji

`!poss
i

Bid j
i
¯ Bid

i

Consequently :

PABB"[aj
i
` ! act

i
] ¯

Bid j
i

3
Ck

`3 3
alk

`!poss
k

Bid l
k

¯
Bid

i
3

Ck
`3 3

alk
`!poss

k
Bid l

k

[
Bid j

i
Bid

i

¯
Bid

i
3

Ck
`3 Bid

k

[
Bid j

i
Bid

i

¯ PBB[aj
i
` ! act

i
][

Est j
i

Sup
i

¯ PBB[aj
i
` ! act

i
][

Est j
i

3
aji

`!poss
i

Est j
i

*

Part (i) means that in the trivial case of minimal action potentials the ABB1 and the

BB with support coincide in their learning behaviour. Part (ii) means that under the
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assumption of disjointness the ABB1 shows the same learning behaviour as an

extended BB according to which each winning classi®er does not perform all its actions

but probabilistically selects an actual action in dependence on the actions’ estimated

goal relevance.

3.1.3. Results, III : BB versus ABB2

Making some simplifying assumptions that aid the mathematical analysis, Grefen-

stette (1988) showed the following convergence property of the BB : if the classi®ers

C
i
and C

j
are coupled in the sense that each ®ring of C

i
is immediately followed by the

®ring of C
j
, and the strength of C

j
converges to a constant value, then the strength of

C
i
also converges to that value. This result can be extended to the ABB2, leading to the

following

Proposition 2. Assume that during each cycle at most one action is performed. If the two

actions aj
i

and al
k

are coupled in the sense that each performance of aj
i

is immediately

followed by the performance of al
k
, and the estimated goal relevance Est l

k
converges to a

constant value (Est l
k
)*, then the estimated goal relevance Est j

i
also converges to (Est l

k
)*.

Proof. If aj
i

is performed during the cycle t and al
k

during the cycle t­1, then

Est j
i
[t­2] ¯ Est j

i
[t]®b[Est j

i
[t]­b[Est l

k
[t­1]

where Est j
i
[t­2] is the estimated goal relevance Est j

i
at the end of cycle t­1. From this

it follows that

Est j
i
[r(n)­2] ¯ (1®b)n[Est j

i
[0]­ 3

n

m="

b[(1®b)nÕm[Est l
k
[r(m)­1]

where n ` N and r(n) is de®ned as r(n) ¯ t iŒ the nth performance of aj
i
occurred during

the cycle t. Consequently :

lim

t
U¢

Est j
i
[t] ¯ lim

n
U¢

Est j
i
[r(n)­2] ¯ (Est l

k
)* *

The signi®cant diŒerence between these convergence results for the BB and the

ABB2 lies in their coupling conditions : in practice a coupling at the classi®er level is

less likely to occur than a coupling at the action level, simply because a classi®er may

perform several actions that satisfy diŒerent classi®ers.

3.1.4. Results, IV : PSP versus APSP

In comparing the convergence properties of the BB and the PSP, Grefenstette (1988)

showed for the PSP that under a constant external reward the strengths of the ®ring

classi®ers converge to this constant. Extending this convergence property to the APSP

results in the following

Proposition 3. If the external reward is a constant value, then the estimated goal

relevance of the performed actions converge to this constant.

Proof. From expression (21) it follows that

Est j
i
[r(n)­1] ¯ (1®b)n[Est j

i
[0]­ 3

n

m="

bu(1®b)nÕm[Ext[r(m)­1]

where Est j
i
[s­1] is the estimated goal relevance Est j

i
at the end of episode s, Ext[s­1]
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is the external reward obtained at the end of episode s, n ` N, and r(n) is de®ned

as r(n) ¯ s iŒ the nth episode during which aj
i

was performed (at least one times)

corresponds to the episode s. If Ext is a constant, Ext*, then it follows

lim
sU¢

Est j
i
[s] ¯ lim

n
U¢

Est j
i
[r(n)­1] ¯ Ext* *

With that, the APSP shows at the ®ner level of the actions the same convergence

qualities than the PSP shows at the coarser level of the classi®ers. As it is easy to see,

in the trivial case in which the action potential of each classi®er is equal to one the

APSP collapses into the PSP.

3.1.5. Results, V : ABB2, APSP, and classi®er lists

The following proposition shows a direct consequence of using one strength value for

each action and modifying the strengths according to the APSP or the ABB2.

Proposition 4. For each classi®er list # a classi®er list # « with E# « ¯ 1 can be constructed

such that the algorithms ABB2 and APSP show for # « the same learning behaviour than

they show for # .

Proof. Construct # « from # as follows.

1. # « ¯ W

2. cC ` # :

if C ¯ Cond
i
, ¼ , Cond

n
}Act and ©c

"
, ¼ , c

L
ª ¯ action schema of C then

# « ¯ # « e ²Cond
"
,¼ , Cond

n
}Act« : act« ` ©c

"
,¼ , c

L
ª´.

Each classi®er in # « can perform exactly one action, and each action that can be

performed by some classi®er C ` # can be also performed by some classi®er C « ` # «

under the same conditions. *

From this proposition and the above considerations it follows that the ABB2 and

the APSP show for a classi®er list # the same learning behaviour than the BB and the

Figure 2. The FSW 1 world.
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PSP, respectively, only show for an extended classi®er list # « with E# « ¯ 1, where

# « is constructed from # as described in the proof above. (Under this construction

r# «r E E#[r# r.)

3.2. Experimental considerations

3.2.1. Task description

For an experimental analysis of the action-oriented algorithms we chose a problem

domain for classi®er systems ®rst described by Grefenstette (1987). Consider the three

®nite-state worlds FSW1 (also known as the GREF1 world), FSW 2 and FSW3

depicted in Figures 2 to 4, respectively. Each of these worlds consists of several start

Figure 3. The FSW 2 world.

Figure 4. The FSW 3 world.
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states, intermediate states and ®nal states ; only one of the ®nal states (the goal state)

is associated with a non-zero external reward. For each of these worlds the task is to

learn moving from the start states to the single goal state. This task captures the

essential features of both the standard and the action-oriented algorithms, and allows

a direct comparison of them. As already pointed out by Riolo (1989), the FSW domain

is very challenging for several reasons. In particular, learning to solve this task requires

the ability to learn to solve several sub-tasks in parallel (because there are several start

states from which the goal state has to be reached) as well as the ability of delayed-

reinforcement learning (because an external reward is only provided after a ®nal state

is reached).

A state-space traversal from any start to any ®nal stateÐsuch a traversal

corresponds to an episodeÐconsists of t elementary state-to-state steps, where t ¯ 3

for FSW 1, t ¯ 5 for FSW2, and t ¯ 4 for FSW3. After having reached a ®nal state, a

new start state is chosen at random with uniform probability. The maximal external

reward per episode is 1000 for both FSW1, FSW2 and FSW 3 ; the random reward per

episode (i.e. the expected reward for a random space traversal) is 150 for both FSW1

and FSW2 and 200 for FSW 3.

3.2.2. Implementation details

By taking Riolo’s (1988) elaborated software package CFS-C as a model, a CS

simulator called CFS-SIM (Hutter 1991) was developed that allows a direct

comparison of the standard and the action-oriented learning algorithms. Here some

details of CFS-SIM and its implementation are described, in as far as they are relevant

to an understanding of the experimental results summarized below.

In order to avoid that a few classi®ers impact the learning performance by ®lling up

the entire message list, the BB is modi®ed such that each classi®er ®res at most one

message per cycle. Thereby the message tuple T ` 4
i
that determines the new message

of a classi®er C
i

is probabilistically selected from the set 4
i

in proportion to the sum

of the intensities of the messages contained in T .

At the end of each cycle ineŒective messages (i.e. messages that do not contribute to

eŒector activation) as well as hallucinatory messages (i.e. classi®er messages that look

like eŒector messages) are deleted from the message list because they are known to

enormously decrease the learning performance (e.g. see Riolo 1989, W eiû 1991).

Because we are interested in the ` pure ’ learning abilities of the action-oriented

algorithms in combination with a genetic algorithm, additional mechanisms like tax

payment (Riolo 1988, Robertson and Riolo 1988) or triggered rule formation (Riolo

1989) are not applied. (The word ` triggered ’ indicates that rule formation is activated

by speci®c triggering conditions. Against that, the genetic algorithm typically is not

triggered, but is activated with a ®xed probability each cycle ; an unconventional

approach to the triggering of the genetic algorithm was presented by Booker 1989.)

The application of a genetic algorithm requires that each classi®er is assigned a

measure representing its ` reproductive ®tness ’. In the case of the BB, the ABB1 and

the PSP this measure is given by the scalar-valued strength of a classi®er. In the case

of the ABB2 and the APSP this measure is calculated as the average of the estimated

goal relevance of a classi®er’s actions. With that, in the case of the action-oriented

algorithms the rule discovery is guided by the goal relevance of the individual actions.&
The output interface of a CS always depends on the problem domain under
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consideration. In the case of FSW1 and FSW 2, the following four eŒectors have been

used :

gggggg00 } 111111gg 3 go path labelled with ` a ’

gggggg01 } 111111gg 3 go path labelled with ` b ’

gggggg10 } 111111gg 3 go path labelled with ` c ’

gggggg11 } 111111gg 3 go path labelled with ` d ’

Similarly, the eŒectors used for FSW3 world are

ggggggg0 } 1111111g 3 go left path

ggggggg1 } 1111111g 3 go right path

CFS-SIM treats the eŒectors in exactly the same way as the classi®ers ; this means, the

steps two and three of the major cycle are based on the same matching, bidding and

activation mechanisms.

3.2.3. Results, I : BB versus ABB1 and ABB2

Except where otherwise noted, the following parameters are used in the experiments

reported below. The classi®er list size is 40, the message list size is 5, and the message

length is 8. The genetic algorithm is applied with probability p per cycle, where

p ¯ 0±03- for FSW1, p ¯ 0 ±02 for FSW 2, and p ¯ 0 ±025 for FSW3. When applied, 5 %

of the classi®ers are selected with probability proportional to the inverse of their

reproductive ®tness and replaced by new classi®ers. The new classi®ers are created as

follows : until no further classi®er is required, two classi®ers are selected with

probability proportional to their reproductive ®tness and modi®ed by means of

mutation and crossover. The strength values of the new classi®ers are set to random

initial values. Figures 5 to 8 show the results of eight experiments. Each data point

in these ®gures re¯ects the mean reward per episode obtained during the previous

1000 episodes, averaged over ®ve runs each starting with a diŒerent set of randomly

generated classi®ers.

Figure 5 shows the performance pro®les of the ABB1, the BB with support and the

BB without support for FSW1 (top), FSW2 (middle) and FSW3 (bottom). The mean

speci®city was 0 ±45. In all three experiments the ABB1 showed the best learning

behaviour. Both the ABB1 and the BB with support performed better than the BB

without support, and all three learning algorithms clearly exceeded the random

performance level. Furthermore, each of the three learning algorithms showed nearly

the same learning qualities for FSW 1, FSW2 and FSW3, although these ®nite-state

worlds diŒer in their episode length.

Figure 6 shows the performance pro®les of the ABB2, the ABB1 and the BB with

support for the ®nite-state world FSW1, using a mean speci®city of 0 ±3 (top), 0 ±45

(middle) and 0±6 (bottom). In all three experiments the performance levels of the three

algorithms were signi®cantly above the random performance level, and the ABB2

performed clearly better than the BB and the ABB1. Furthermore, the ABB2

performed equally well for the diŒerent mean speci®cities. Against that, the BB and the

ABB1 showed a contrary learning behaviour for low and high speci®cities : the BB

performed better for low speci®cities than it performed for high ones, whereas the

ABB1 performed better for high speci®cities than it performed for low ones. An

examination of the development of the classi®er strengths during the runs shows the

following reason for this contrary behaviour : the BB tends to increase the strengths
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too quickly for high speci®cities, whereas the ABB1 tends to decrease the strengths too

quickly for low speci®cities.

3.2.4. Results, II : PSP versus APSP

Figure 7 shows the performance pro®les of the PSP and the APSP for the ®nite-state

world FSW1, using a mean speci®city of 0 ±45. The random performance level is clearly

outdone by the performance level of the PSP, which in turn is clearly outdone by the

performance level of the APSP.

Figure 5. Performance pro®les of the ABB1, the BB with support and the BB without

support for FSW1 (top), FSW2 (middle) and FSW3 (bottom), using a mean

speci®city of 0 ±45.
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3.2.5. Results, III : M ultiple strengths versus scalar strengths

A comparison of the multiple-strengths algorithms and the scalar-strength algorithms

shows that the former (the ABB2 and the APSP) obviously performed better than the

latter. The reason for this is that a scalar-valued strength necessarily is only a vague

measure of the goal relevance of each of the actions performed by a classi®erÐat best,

a scalar-valued strength indicates the average goal relevance of the actions of a

classi®er. As a consequence, because this vague measure is used for calculating the

bids, the bids themselves are vague.

3.2.6. Results, IV : (A)BB versus (A)PSP

Finally, in comparing the BB-type and the PSP-type algorithms within the scope of

these experiments and under equal conditions, two things can be observed. First, the

Figure 6. Performance pro®les of the ABB2, the ABB1 and the BB with support for

FSW1, using a mean speci®city of 0 ±3 (top), 0 ±45 (middle) and 0 ±6 (bottom).
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Figure 7. Performance pro®les of the PSP and the APSP for FSW1, using a mean

speci®city of 0 ±45.

Figure 8. Performance pro®les of the ABB2 and the APSP for FSW 3, using a mean

speci®city of 0 ±45.

performance level of the PSP roughly lies in between the performance levels of the BB

with support and the ABB1. Second, as is shown by Figure 8, the APSP clearly

performs better than the ABB2. These comparative results are consistent with

Grefenstette’s (1988) theoretical and experimental comparison of the BB-type and the

PSP-type algorithms.

4. Conclusions

This article considered learning in CSs from an action-oriented point of view. Three

extensions of the standard BB and PSPÐthe ABB1, the ABB2, and the APSPÐwere

investigated that strictly work on the principle of action orientation. These action-

oriented algorithms realize learning at the ®ner action level in the same way than the

standard ones do at the coarser classi®er level. The ABB1, ABB2 and APSP provide

several new aspects of learning in CSs, including the notion of estimated goal relevance

of an action, the concept of multiple bids per classi®er, and the action-oriented

mechanisms of bidding, ®ring and strength adjustment. Their major characteristic is

that they correlate the learning processes in a CS with the possible and actual actions

of the individual classi®ers. The theoretical and experimental considerations showed

that the action-oriented perspective leads to a clear improvement over the traditional

perspective.
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Of course, CSs are very complex learning systems, and there are several issues that

have been not addressed in this article. In particular, currently it is not known what

eŒects the action-oriented perspective does have on

E the problem of default hierarchy formation (see Riolo 1987),

E the cooperator}competitor dilemma in CSs (see Wilson and Goldberg 1989), and

E the problem of forming higher-level behavioural modules (see Dorigo and

Colombetti 1994, Dorigo and Schnepf 1993).

To clarify these issues has to be a central goal of future research. The work reported

in this article provides a solid basis for achieving this goal.
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Notes

1. As a consequence of this diŒerence, the BB requires less memory and less peak computation than the

PSP, but the PSP typically achieves a better perform ance level than the BB. Roughly, this is because the

BB has di�culties in generating long classi®er sequences, whereas the PSP needs to maintain detailed

inform ation about the past activities carried out by the CS. See Weiû (1994) and also Smith and

Goldberg (1990) for further aspects of this consequence.

2. By ` standard BB ’ we refer to the BB as described , for instance, by Holland (1986) and Riolo (1988).

(The concept of support-b ased bidding described below is a relatively young, yet well established

extension of the original BB ; see also Booker 1988.)

3. By ` standard PSP ’ we refer to the PSP as described by Grefenste tte (1988). As mentioned by

Grefenste tte, there are many variations of this standard form ; for instance, instead of expression (9) the

bids might be collected for each ®ring of a classi®er, and in this case even support-ba sed bidding and

strength adjustment could be realized.

4. Of course, many modi®cations of the BB and the PSP have been proposed in the literature ; for instance,

see the message-based BB (Dorigo 1991), the context-array BB (Huang 1989a, 1989b), the look-ahead

BB (Riolo 1990), the implicit BB (Wilson 1985), the hierarch ical BB (Wilson 1987), and the

modi®cations of the PSP mentioned in Grefenstette (1988). However, none of these modi®cations

solves the problem of lacking diŒerentiation at the action level.

5. As Huang (1989a, 1989b) emphasized, array-valued strengths can provide additiona l inform ation for

rule modi®cation and discovery . For instance, the array-valued strengths could be used for protecting

those classi®ers from replacement whose estimated goal relevance of at least one action is greater than

some pre-de®ned value. However, within the frame of the experiments described here such additiona l

inform ation is not used. See Huang (1989a, 1989b) for further details of the scalar-versus-mult iple-

strengths diŒerences.
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