

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Morcillo, Carlos Gonzalez]
On: 13 April 2010
Access details: Access Details: [subscription number 921256342]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

Applied Artificial Intelligence
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713191765

A MULTIAGENT ARCHITECTURE FOR 3D RENDERING
OPTIMIZATION
Carlos Gonzalez-Morcillo ab; Gerhard Weiss b; David Vallejo a; Luis Jimenez-Linares a;Jose Jesus Castro-
Schez a

a Escuela Superior de Informatica, Paseo de la Universidad, Ciudad Real, Spain b Software Competence
Center GmbH, Hagenberg, Austria

Online publication date: 12 April 2010

To cite this Article Gonzalez-Morcillo, Carlos , Weiss, Gerhard , Vallejo, David , Jimenez-Linares, Luis andCastro-Schez,
Jose Jesus(2010) 'A MULTIAGENT ARCHITECTURE FOR 3D RENDERING OPTIMIZATION', Applied Artificial
Intelligence, 24: 4, 313 — 349
To link to this Article: DOI: 10.1080/08839511003715212
URL: http://dx.doi.org/10.1080/08839511003715212

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713191765
http://dx.doi.org/10.1080/08839511003715212
http://www.informaworld.com/terms-and-conditions-of-access.pdf

Applied Artificial Intelligence, 24:313–349
Copyright © 2010 Taylor & Francis Group, LLC
ISSN: 0883-9514 print/1087-6545 online
DOI: 10.1080/08839511003715212

A MULTIAGENT ARCHITECTURE FOR 3D
RENDERING OPTIMIZATION

Carlos Gonzalez-Morcillo1,2, Gerhard Weiss2, David Vallejo1,
Luis Jimenez-Linares1, and Jose Jesus Castro-Schez1
1Escuela Superior de Informatica, Paseo de la Universidad, Ciudad Real, Spain
2Software Competence Center GmbH, Hagenberg, Austria

� Rendering is the process of generating a 2D image from the abstract description of a
3D scene. In spite of the development of new techniques and algorithms, the computational
requirements of photorealistic rendering are huge so that it is not possible to render them in real
time. In addition, the adequate configuration of rendering quality parameters is very difficult to
be done by inexpert users, and they are usually set higher than in fact are needed. This article
presents an architecture called MAgArRO to optimize the rendering process in a distributed,
noncentralized way through a multiagent solution, by making use of expert knowledge or
previous jobs to reduce the final rendering. Experimental results prove that this novel approach
offers a promising research line to optimize the rendering of photorealistic images.

INTRODUCTION

The process of generating a 2D image comprises several phases such as
modeling, setting materials and textures, placing virtual light sources, and
finally rendering (Kerlow 2004). Rendering algorithms take a description
of geometry, materials, textures, light sources, and the virtual camera as
input to produce an image or a sequence of images (in the case of
animations) as output. There are different rendering algorithms ranging
from simple and fast to complex and accurate that simulate the light
behavior in a precise way (Pharr and Humphreys 2004). These methods
are normally classified into two main categories (Goral et al. 1984): local
and global illumination algorithms.

This work has been funded by the Junta de Comunidades de Castilla-La Mancha under
Research Projects PII2I09-0052-3440 and PII1C09-0137-6488. Special thanks to Javier Galan for his
indoor scene used in this work for testing the system.

Address correspondence to Carlos Gonzalez-Morcillo, Escuela Superior de Informatica, Paseo
de la Universidad 4, 13071 Ciudad Real, Spain. E-mail: Carlos.Gonzalez@uclm.es

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

314 C. Gonzalez-Morcillo et al.

High-quality photorealistic rendering of complex scenes is one
of the key goals of computer graphics. Unfortunately, this process is
computationally intensive and requires a lot of time when the rendering
technique simulates global illumination issues. Global illumination
algorithms are known for their unpredictable data accesses and their
computational complexity (Jensen 2004). As pointed out by Kajiya (1986),
all rendering algorithms aim at modeling the light behavior over various
types of surfaces and try to solve the rendering equation, which forms
the mathematical basis for all rendering algorithms. Depending on the
rendering method and the scene characteristics, the generation of a single
high-quality image may take several hours (or even days!).

Because of the huge amount of time required, the rendering phase
is often considered as a bottleneck in photorealistic projects in which
one image may need hours of rendering in a modern workstation. For
instance, Pixar’s famous animation movie “Cars” was estimated to spent
2300 CPU years by one of the technology manager of the studio. In other
words, a single computer would have to run over 2300 years to perform
the rendering of all the frames that compose the movie. In fact, the first
rendering tests took 10 hours for a single frame. If the running time of
the film is 116 minutes and the frame rate is 24 frames per second, that
is, each second of the film requires 24 generated images, then rendering
becomes an important problem. In addition, the adequate configuration
of input parameters and variables values of the scene (number of samples
per light, number of photons, depth limit in ray tracing, etc.) is very
complex. Commonly, the user of the 3D rendering engine chooses very
high values that do not affect to the perceptual quality of the resulting
image. Unfortunately, this fact increases even more the rendering time of
the scene without actually improving the final result.

To face these challenges, we introduce an optimization approach based
on principles, techniques, and concepts known from the area of multiagent
systems. The key advantages of this approach are robustness, flexibility,
good scalability, decentralized control (autonomy), and the capacity of
performing local optimizations thanks to the use of expert knowledge.
Through this novel and pioneering approach we aim to reach three main
goals: i) to reduce the time spent in the rendering of photorealistic images
by means of a distributed approach, ii) to optimize critical rendering
parameters through the acquisition of expert knowledge or learning
based on previous experience by rendering agents, and iii) to provide
a multiagent framework to advance the state of the art on distributed
rendering. The approach devised in this article has been extensively
evaluated with good results in complex scenes.

The rest of the article is structured as follows. We first discuss the
alternatives and research lines in rendering optimization. We focus our
effort on one of the most promising issues related with parallel and

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

A MultiAgent Architecture for 3D Rendering Optimization 315

distributed rendering. In this section we also analyze previous work
that applies artificial intelligence methods for rendering optimization
and, more specifically, the related work made in multiagent systems.
The architecture of MAgArRO (multiagent architecture for rendering
optimization) is described in depth next. The functional prototype of
MAgArRO implements the core of a multiagent system based on the
design principles of the FIPA standard (FIPA n.d.a). The empirical results
obtained with this prototype, using a different number of agents and input
variables, are exposed in the next section. Finally, we resume the main
contributions of our work and conclude with some ideas about future
research lines.

RELATED WORK

There are various rendering methods with different characteristics
and properties that make each algorithm more appropriated for diverse
application domains. One of the most famous algorithm is the ray tracing
algorithm (Whitted and Holmdel 1980). An extension of this method
proposed by Cook et al. (1984) and called distributed ray tracing uses
Monte Carlo techniques for integration as the classical version of the
algorithm. There are some tricks like ambient occlusion, such as in
Zhukov et al. (1998) and Hurley (2005), that simulate the effect of global
illumination. Radiosity techniques, originally introduced by Goral et al.
(1984), are based on the principle of light exchange between surfaces.
According to the Monte Carlo integration method, path tracing was the
first method that supported all kinds of light transport paths and produced
correct images (from the point of view of the light transport). This
technique was proposed by Kajiya (1986) in the same article in which the
rendering equation was introduced. One technique widely used to avoid
noise in path tracing is the use of irradiance cache, proposed by Ward et al.
(1988). Bidirectional path tracing was proposed by Lafortune et al. (1993)
and consists in generating ray paths from the light sources and from the
virtual camera. The metropolis light transport algorithm was proposed by
Veach and Guibas (1997) and works well in hard lighting situations (like
small holes in a surface where the light enters or in caustics simulations).
This algorithm, like the bidirectional path tracing, also makes use of the
Monte Carlo approach to solve global illumination problems in two phases.

There are many techniques based on the previous algorithms, but it
is not the purpose of this work to make an analysis of rendering methods
in depth. The different levels of realism of rendering methods are related
to complexity and computation time spent. Even more, with the new
acquisition techniques, high-resolution screens (monitors, TV, cinema),
and the look for hyperrealism in many application areas, the rendering

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

316 C. Gonzalez-Morcillo et al.

time (and the requisites of resolution, quality, and complexity of scenes)
will keep on growing up.

As previously discussed, one of the key problems in photorealistic
computer graphics is the time spent in rendering due to the unpredictable
data accesses and the high computational complexity of related algorithms.
Several alternatives minimize the computation time (Chalmers et al. 2002).
In the next subsections some options to optimize this task are described.

Optimizations via Hardware

Modern graphics processing units (GPUs), currently integrated in
most personal computers, can be used as massively parallel and powerful
streaming processors that run concrete portions of the code of a ray tracer.
The use of programmable GPUs outperforms the standard workstation
CPUs by a factor of approximately seven (Buck et al. 2004). This
characteristic, together with the low cost and the high processing speed of
modern GPUs (which are doubling their performance every 6 months),
currently represents a tendency that consists in using this unit as a parallel
specific processor in some rendering issues. The use of the CPU in
conjunction with the GPU requires new paradigms and alternatives to
traditional architectures. For example, the architectural configurations
proposed by Rajagopalan et al. (2005) demonstrate the use of a GPU to
work on real-time rendering of complex data sets that demand complex
computations or the load balanced algorithm to render unstructured
grids with hardware and software (Weiler and Ertl 2001). There are some
rendering engines designed to be used with GPU acceleration, such as the
Parthenon Renderer (Hachisuka 2005), or the Gelato Heath (2008).

Special purpose hardware architectures can also be built to achieve
the maximum performance in specific tasks. PURE uses the fully
programmable ray tracing hardware architecture RPU (Woop et al. 2005),
which hosts dedicated hardware for spacial division structures. McEwan
et al. (2007) proposed modifications to the basic ray tracing algorithm by
targeting reconfigurable hardware devices and giving an estimation for the
hardware needed.

Ray tracing can be exploited in the future as an alternative to the z-
buffer algorithm for interactive use by directly implementing it in GPUs
(Shirley et al. 2008). The impact in image synthesis community will be very
important.

These alternatives are very effective in time optimization. However, the
lack of generality of most of them is a significant problem. In fact, these
algorithms have to be specifically designed for each hardware architecture,
and some optimizations are even made with the help of specialized chips.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

A MultiAgent Architecture for 3D Rendering Optimization 317

Optimizations Using Parallel Computing

Another option to optimize the rendering involves the use of parallel
or distributed systems. If the main problem is divided into a number of
smaller problems (each of which is solved by an individual processor), the
time spent to solve the whole problem is reduced. Although generally this
is true, all processing elements must be fully utilized and a task scheduling
strategy must be adopted. Within this context the task forms the elemental
unit of computation of the parallel implementation (Chalmers et al. 2002),
and its output is the application of the algorithm to a specified data item.
For example, in ray tracing one task may involve computing the value of
some set of pixels at the image plane.

One common alternative for solving a problem on a parallel system
consists of using a domain decomposition approach, which runs an
algorithm on different data items (tasks) in parallel. The domain
decomposition can be done by using a data-driven or a demand-driven
approach. In the data-driven model (Figure 1a and b) the tasks are
assigned to the processing units before starting to compute. In the
other alternative, the demand-driven model (Figure 1c), the tasks are
dynamically allocated to the processing units as they become idle. This
is done by implementing a pool of available tasks, and the processing
units request the tasks to be done. The parallel architecture may be
designed to keep all the processing units fully utilized. This is not trivial
because the proper nature of rendering implies that different zones of the
image plane may have a different complexity due to some characteristics
like the geometry of the object, material, texture, and lights and shadows.
The differences in the computational effort associated with the tasks
increase the probability for the processing elements to become idle.

To avoid this effect, the tasks must be allocated by taking into account
the complexity of each one and by assigning them to the processors in a
balanced way. In Figure 1b, the tasks have been assigned to the processors

FIGURE 1 Data- and demand-driven models for the allocation of the tasks (PU = processing unit).

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

318 C. Gonzalez-Morcillo et al.

in sets of 18 complexity units, that is, the sum of the complexities of the
work units that compose a task is equal to 18. In this example, processor
2 performs a lower number of tasks than processor 1, but the more
complicated ones.

In the demand-driven computational model, the tasks are dynamically
allocated to the processing units as they become idle. When a processing
unit obtains the result of a task, it demands for the next task of the pool
(Figure 1c). The dynamic allocation of tasks ensures that although there
are available tasks, the processing units will be working on them. This
approach facilitates the load balancing scheme so that there are only load
imbalances with the latest tasks. For instance, if the last task for PU1 is
very simple and the last one for PU2 is very complex, PU1 will become idle
before PU2 finishes its task. This problem can be avoided by sorting the
tasks depending on their complexity. In this way, the more complex tasks
should be allocated before the less complex ones. This approach minimizes
the idle time with the latest tasks.

The more relevant group of distributed and parallel rendering systems
(in the image synthesis area; there are a lot of works in the interactive
graphics field that are out of the scope of our work) is formed by
dedicated clusters and rendering farms. Some 3D animation companies use
their rendering farms in their own productions, and some of them offer
rendering services via Internet. An user of these rendering services can
make use of the dedicated cluster that the company owns. Depending on
how to do the division of tasks, we distinguish between fine-grained systems,
in which each image is divided into small parts that are sent to a processor
to be independently rendered, or coarse-grained (in case of animations),
in which each frame of an animation is entirely rendered by a computer.

For example, Jevans (1989) used a dynamic load balancing (demand-
driven) scheme with spacial partitioning based on voxels. Other
approaches, like Ris and Arques (1994), use a static load balancing scheme
on a network with sequential workstations and parallel computers. Other
approaches oriented to render animations, like Stober et al. (1988)
and Martino and Köhling (1992), incorporate coarse-level dynamic load
balancing (demand-driven) schemes and distribute individual frames of
an animation to computers connected to the system.

There are many approaches based on the completely redesign
of rendering algorithms to achieve high efficiency in distributed
environments. Although global illumination algorithms are becoming
more and more complex, the effort needed to analyze and adapt the
code to a parallel system is also very high, and the result usually affects
the design of the original algorithm so that it is very hard to maintain.
Examples of these approaches can be found in Snell and Gustafson (1997),
Kato and Saito (2002), and Günther et al. (2004). Other alternatives, like
that proposed by Kipfer and Slusallek (1999), transparently introduce

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

A MultiAgent Architecture for 3D Rendering Optimization 319

distributed logic in the code of existing object-oriented solutions (by using
the CORBA [Henning and Vinoski 1999] middleware).

New approaches of distributed rendering use the grid approach (Foster
et al. 2002) to allocate tasks among a large number of heterogeneous
computers connected to the Internet (Patoli et al. 2008; Gooding et al.
2006). Volunteer computing is a research line that uses the idle time
of processors (Fernandez-Sorribes et al. 2006). This kind of system uses
computers connected to the Internet, volunteered by their owners, as a
source of computing power for rendering 3D scenes by using different
rendering engines (Anderson et al. 2005; Anderson and Fedak 2006).

The main advantage of these alternatives is the high-efficiency obtained
when using existing computers. There is no need of specialized hardware,
and in many organizations a cluster of available workstations is enough.
One of the key problems is related with the effective load balancing and
the difficult management when the number of the nodes connected to the
server grows up.

Distributed Multiagent Optimizations
The distributed approach is a good option to optimize the rendering

process. In spite of the fact that the optimization made in this way can
improve the global rendering time in a huge factor, there are some key
quality parameters selected by the user that play a critical role in this time.
These input parameters are, for example, the number of samples per pixel,
the recursion level in ray tracing, the number of photons in the photon
mapping technique, and so on. Usually, inexpert users choose values
higher than needed, without improving the perceptible quality of the final
image but with an important increase of the rendering time. To avoid this
situation, expert knowledge could be modeled to automatically select a
good configuration of the input parameters. Therefore we have a good
starting point based on distributed systems, but some expert knowledge
could be added to obtain better results. The inherent distribution
of multiagent systems and the interactions between intelligent agents
configure a promising alternative for rendering optimization.

There are few previous attempts on the use of this approach for
optimizing the rendering process. The work presented by Rangel-Kuoppa
et al. (2003) used a multiagent platform (a JADE-based implementation)
to distribute interactive rendering tasks (pure rasterization) across a
network. The distribution of the task is based on a centralized client-
server approach, in which the agents send the results of the rasterization
of objects to a centralized server. Although using a multiagent architecture,
there is no specific use of the multiagent technology. The use of the
JADE framework (Bellifemine et al. 2007) is only for communication
issues between nodes, but there is no knowledge, learning, or auctions.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

320 C. Gonzalez-Morcillo et al.

The authors used a multiagent platform to reduce the development time
by using a tested tool. Finally, they conclude that adopting a multiagent
architecture for interactive rendering is not a good option, due to the
excessive time consumed in communication and the low performance as a
result of using a Java implementation.

The work in stroke-based rendering (a special method of nonrealistic
rendering) proposed by Schlechtweg et al. (2005) makes use of a
multiagent system for rendering artistic styles such as stippling and
hatching. The environment of the agents consists in a source image and
a collection of buffers. Each agent represents one stroke and executes its
painting function in the environment. These simple agents (called render
bots) execute three actions: simulation, to control the physical behavior
of the agent; movement, to translate the agent to other position in the
environment; and painting, to generate one stroke in the final image.

Our approach is based on a multiagent architecture (Weiss 1999) that
allows us to distribute the rendering tasks between the agents registered
with the multiagent system. We devise different agents depending on the
role that play within the Multi-Agent System (MAS): agents responsible for
managing the submission of rendering works and the correct composition
of partial results (master agent), agents responsible for performing an
analysis of input scenes to divide the whole work into different tasks
by balancing their complexity (analyst agent), and agents responsible for
rendering these tasks by making use of knowledge base acquired through a
knowledge acquisition subsystem (rendering agent). These rendering agents
are also capable of participating in auctions when they are notified about
a new existing work. The auction mechanism takes into account the
number of credits and the historical behavior of each rendering agent to
distribute the tasks with the aim of reducing the global rendering time.
The prototype of this specific distributed rendering has been deployed
over a previously developed general-purpose FIPA-compliant multiagent
framework to empirically demonstrate how this novel approach based on
expert knowledge optimises the rendering process.

MAgArRO APPROACH

This section gives a general description of the approach adopted in this
work. First a multi-agent system designed according to the FIPA committee
(FIPA n.d.a) has been developed to provide the basis for agent-based
solutions in different application domains. The aim of this approach lies
in providing a common set of management services shared by any specific
multiagent system devised to solve a particular problem. In our case this
problem is distributed rendering. Thanks to this approximation, we are
able to reuse this set of basic services for any problem that requires an
agent-based solution, obtaining an architectural base that can be adopted

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

A MultiAgent Architecture for 3D Rendering Optimization 321

to develop specific agents for a particular domain. Next, we briefly describe
the basic services of a multi-agent system designed according to FIPA
specifications.

The Agent Management System (AMS) is a general service that
manages the events that occur in the platform and controls the state of
each agent. This service also offers the white pages service that allows
agents to discover one another. The basic functionality of the AMS is to
register agents, modify subscriptions, unregister agents, and search for
agents with specific characteristics.

The Directory Facilitator (DF) implements the yellow pages service for
agents. The operations are basically the same that in the AMS, but the
internal data structure and the behavior are different. The implementation
of this service follows the indications of the FIPA standard, by modeling
the parameters related to the services provided by an agent, interaction
protocols, ontologies, known content languages, maximum live time of
registration, and visibility of the agent description in the DF. This service
is persistent and is automatically activated on demand. The agents are also
notified about new events thanks to the subscription mechanism provided
by this service.

The Agent Communication Channel (ACC) receives and sends
messages between agents. According to the FIPA standard, the data
structure of each message is composed of two parts: the content of the
message and the envelope (with information about the receiver and the
sender of the message).

From this general-purpose MAS a set of agents and services specifically
designed for the problem of distributed rendering is deployed. From an
abstract point of view, the MAgArRO system can be viewed as a black box
that takes a 3D scene as input and produces the resulting 2D rendered
image. Inside this black box there is an undefined number of agents
that cooperate to perform the distributed rendering and a set of well-
defined services that give support to specific tasks. Figure 2 graphically
shows this set of rendering agents and services. Next, we briefly describe
the functionality of each one them:

• Master: This agent is responsible for managing a group of rendering
agents. The main abilities of the master consist in supervising the
rendering of a previously submitted work and composing the partial
results provided by the rendering agents which take part in such work.

• Analyst: This agent analyzes the 3D scene to be rendered to study its
complexity. When this is done the 3D scene is divided into a number
of tasks (work units) with a similar complexity. In this way a master can
orchestrate the distributed rendering of these tasks between a set of
rendering agents.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

322 C. Gonzalez-Morcillo et al.

FIGURE 2 MAgArRO general class diagram (the framed area represents the agents and services
that compose MAgArRo).

• Rendering Agent: This agent is capable of performing the rendering
of tasks by applying a knowledge base acquired through the knowledge
acquisition subsystem or tool (Castro-Schez et al. 2004) or learned
from previous experiences using machine learning algorithms (Castro
et al. 1999) to optimize this process by adjusting relevant rendering
parameters. As is shown in Figure 2, a Rendering Agent is a specialization
of the FIPA standard agent so that all the functionality and requirements
specified by FIPA are inherited by the rendering agent.

• Model Repository: This service gives support for storing the 3D models
rendered. Basically, this repository allows the rendering agents to
download the whole 3D scene submitted by the user.

• Blackboard: This service maintains the data structures used to write/read
the progress of rendering a 3D scene by a set of rendering agents.
The blackboard provides the rendering agents with the communication
mechanism needed to perform the distributed rendering in a parallel
way.

The basic workflow of MAgArRO is shown in Figure 3, where the
circled numbers represent the following steps:

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

A MultiAgent Architecture for 3D Rendering Optimization 323

FIGURE 3 General workflow and main architectural roles of MAgArRO.

1. The system receives a new work (the user submits such work to the
Analyst by means of a public interface). In the current development
version, a web interface is provided for the user to easily submit a
work. Previously, the rendering agents were subscribed to one of the
Masters of the system (see below). This subscription can be done in any
moment so that the available agents are dynamically managed.

2. The Analyst makes a fast analysis of the scene by dividing the work into
a number of tasks that share a similar complexity (see below).

3. The Analyst uploads the model to the Model Repository and notifies the
existing work to a Master.

4. The Master notifies the new work to some of the Rendering Agents
(possibly running on different computers) that are available.

5. Each Rendering Agent downloads the 3D model from the repository and
the auction process managed by the Master begins.

6. The Master assigns the work units to each Rendering Agent.
7. The Rendering Agents start to render such tasks.
8. When a Rendering Agent has rendered a task, the result of such work

units is sent to the Master and the Rendering Agent bids for another work
unit.

9. The final result is composed by the Master from the partial results
previously submitted by the Rendering Agents.

10. The Master sends the final rendered image to the user.

Next, we introduce the formalization of MAgArRO (M ′):

M ′ = 〈S ,A,R ,�,B, I 〉

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

324 C. Gonzalez-Morcillo et al.

where

1. S is the input scene to be rendered.
2. A is the Analyst agent, which can be define as follows:

A = 〈CS ,ES ,O〉
being CS an estimation of the complexity of S and ES a strategy used to
divide S into O , which represents a set of scene partitions with similar
complexity. We refer each one of these partitions as a working unit. That
is, O = �wu1, � � � ,wun� with each wui being a work unit.

3. R is the Model Repository service that stores the set of partitions O
generated by the analyst A.

4. � is defined as follows:

� = �(mi ,RAi) | i = 1 � � �n�

where in each pair (mi ,RAi), mi represents a Master agent and
RAi is a finite set of Rendering Agents working for him, i.e., RAi =
�rai1, rai2, � � � , raim�.

• A Master service mi assigns working units wuj ∈ O to each rendering
agent raij in RAi and analyses the partial results provided by each raij
to compose the final image I . A master mj is defined as follows:

mj = 〈IDmj ,KBSj 〉
where

– IDmj is the master’s identifier, which is unique in the system
execution domain.

– KBSj is the master’s knowledge base, which consists of a blending
method and a set of rules to determine its parameters.

• RAi is a finite set of Rendering Agents, RAi = �rai1, rai2, � � � , raim�. Each
Rendering Agent raij ∈ RAi is defined as follows:

raij = 〈IDRj ,KBSj ,Crj ,Hj ,CPj , STj 〉
where

– IDraj is the rendering agent’s identifier, which is unique in the system
execution domain.

– KBSj is the agent’s knowledge base, which consists of rendering
methods and sets of rules to optimize the rendering parameters
depending on the assigned task.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

A MultiAgent Architecture for 3D Rendering Optimization 325

– Crj represents the agent’s number of credits. This element represents
the agent’s historical behavior (Cr ∈ �) used to check if the
rendering agent performs the rendering tasks in a time shorter or
similar than the previously estimated by the analyst.

– Hj is the agent’s recent history. It is a set of boolean values that
represent success or failure in the last working units assigned (it was
carried out in the right time or not).

– CPj is the agent’s computational capacity. This parameter depends on
the computer where the rendering agent runs (CPj ∈ �+).

– STj is the internal agent’s state, which can take values from the set
{Estimating, Bidding, Rendering, Resting, Finishing }.

5. B is the Blackboard service. This component maintains useful
information about the input scene S and the rendering process, such
as the work units assigned to each raij in a concrete moment.

6. I is the resulting 2D image rendered.

In the next section, we describe in detail each one of the elements of
the formalization and how we have addressed the problem of distributed
rendering.

MAgArRO MULTIAGENT ARCHITECTURE

Analyzing the Input 3D Scene

As we discussed previously, it is very convenient to have an estimation
of the complexity of the different work units that compose the input scene
to be rendered previously submitted by the user. In our architecture this
service is provided by the Analyst Agent (A = 〈CS ,ES ,O〉). The main goal
of this agent is to achieve a good load balancing of the work units that
compose the input scene, that is, the main objective in this partitioning
process is to obtain work units with a similar complexity to avoid the delay
in the final time caused by too complex tasks. This analysis is carried
out in a fast way independently of the rendering algorithm used. For
each submitted 3D scene (Figure 4a), the Analyst generates an importance
map as shown in Figure 4b to determine what parts of the scene are
complex and what parts are not (see Gillibrand et al. 2005, 2006 for similar
approaches).

In the beginning the Analyst performs a fast rendering of the scene
by means of an importance function to obtain a gray scale image (CS)
to estimate the complexity of the model (see the corresponding sequence
diagram in Figure 5). In this image (called Importance Map), the dark
zones represent the less complex areas and the white zones the more
complex ones. Currently, a function that only takes into account the

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

326 C. Gonzalez-Morcillo et al.

FIGURE 4 Importance maps. (a) Resulting 2D image obtained after rendering the dragon 3D scene.
(b) Importance map. (c) Blind partitioning (First level). (d) Joined zones with similar complexity
(Second level). (e) Balancing complexity/size ratio (Third level).

FIGURE 5 Sequence diagrams in AUML notation. Top Left: Analysis and Notification of new work
protocol. Bottom Left: Agent subscription protocol. Right: Rendering protocol.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

A MultiAgent Architecture for 3D Rendering Optimization 327

recursion levels in mirror and transparent surfaces is used. As shown in
Figure 4b, the glass is more complex that the dragon because it has mirror
and transparency properties with a higher number of ray interactions than
other objects. The table is less complex because it does not have any of
these properties.

Once the importance map is generated, the next step consists in
applying the strategy (ES) developed to divide the input scene S into O ,
that is, the set of partitions or tasks with a similar complexity performed
later by the rendering agents. Afterward, the analyst is able to upload to the
model repository the whole scene that contains the 3D model and to notify
this set of tasks to a master mi (see top left of Figure 5). The strategy ES
allows to made the task division in different levels so that each partitioning
level is made by using the information of the previous level.

In the first level the partition is made by taking into account the
minimum size and the maximum complexity of each zone. With these
two parameters, the Analyst makes a recursive division of the work units
(Figure 4c). Algorithm 1 describes the first level of partitioning. In this

Algorithm 1 Blind Recursive Division BlindDivision (Figure 4c)

Require: wun // nth work unit
// Calculate the mean m and the typical deviation d
s ← 0,n ← 0,L(wun) ← �

for i = wun(x1) to wun(x2) do
for j = wun(y1) to wun(y2) do

s ← wun �pixel(i , j)
n ← n + 1

end for
end for
m ← s/n
s ← 0
for i = wun(x1) to wun(x2) do

for j = wun(y1) to wun(y2) do
s ← (wun �pixel(i , j) − m2)

end for
end for
d ← √

s/n
// Recursive partitioning of the work unit wun

if d >MAXDEV and wun �size >MINSIZE then
x1 ← wun(x1), x2 ← wun(x2), y1 ← wun(y1), y2 ← wun(y2)
BlindDivision(WU(x1, y1, x1 + (x2 − x1)/2, y1 + (y2 − y1)/2))
BlindDivision(WU(x1 + (x2 − x1)/2, y1, x2, y1 + (y2 − y1)/2))
BlindDivision(WU(x1, y1 + (y2 − y1)/2, x1 + (x2 − x1)/2, y2))
BlindDivision(WU(x1 + (x2 − x1)/2, y1 + (y2 − y1)/2, x2, y2))

else
L(wun) ← L(wun) + wun // Add wun to list of work units
(stop recursion)

end if

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

328 C. Gonzalez-Morcillo et al.

Algorithm 2 Joining of wun of Similar Complexity Joining (Figure 4d)

Require: List of wun (L(wun) from algorithm 1 (BlindDivision)
c ← true // c indicates if there is change
while c do

c ← false
for wui in L(wun) do

for wuj in L(wun) do
if |wui �m − wuj �m|〈MAXDIFF and Adj(wui ,wuj) then

wuk ← Join (wui ,wuj)
L(wun) ← L(wun) − wui − wuj + wuk

end if
end for

end for
end while

algorithm the pair [x1, y1] represents the upper left corner of the work
unit wun , the pair [x2, y2] represents the bottom right corner of wun ,
the function pixel(i,j) returns the value of each pixel of wun , MAXDEV is
the maximal value allowed for the typical deviation and MINSIZE is the
minimal size (width × height) allowed for wun .

In the second level of partitioning (see Algorithm 2), the neighbor
work units with similar complexity are joined. In this algorithm MAXDIFF
is the biggest difference value allowed between the value of wun . The
Adj function indicates if the related wun are neighbors. The Join function
returns a new wun as a result of the combination of the two wun passed as
parameters.

Finally, in the third level of partitioning, the Analyst tries to obtain
a balanced division with almost the same complexity/size ratio of each
work unit (see Algorithm 3). In this method, Lc stores one list of the
complexity/size ratio of each wun , m stores the mean of this ratios, and
d the typical deviation. In the main loop, for each element of Lc it is
necessary to make an horizontal or vertical partition.

By means of this final approximation, we try to obtain the set of tasks O
with a similar complexity so that the rendering time does not differ among
work units. As we discuss in the next section, the quality of this partitioning
is very related with the final rendering time. It is important to remark that
because of the unpredictable nature of ray tracing methods, this is only an
approximation of the complexity of the work unit.

After having performed this initial estimation with a certain
partitioning level, the analyst updates the blackboard with the relevant
information that will be used by both a master mi and a set of rendering
agents RAi . This information comprises the unique identifier of the
work (IdWork), each one of the work unit identifier (wun) in which
the whole project was divided, the size in pixels (Size) of each task, and

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

A MultiAgent Architecture for 3D Rendering Optimization 329

Algorithm 3 Balancing of wun (Complexity/Size Ratio) Balancing
(Figure 4e)

Require: List of wun (L(wun) from Algorithm 2 (Joining)

for wui in L(wun) do

Lc ← complex(wui) / size(wui)

end for

m ←
∑n

i=0 Lci
n

d ←
√ ∑n

i=0 (Lci−m)2

n

Lz ← �

for i in length(Lc) do

if m ≤ Lc[i] then

Lz ← Horizontal partitioning of Lc[i]
if Lc[i] ≥ m× DIVFACTOR then

Lz ← Vertical partitioning of Lc[i]
end if

L(wun) ← L(wun) − L(wun)i + Lz

end if

end for

the complexity (Comp) of each task. In this way the rest of agents of the
distributed rendering platform are able to know the division previously
carried out by the analyst agent.

Forming Rendering Teams

Once the Analyst has performed the complexity analysis of the input
scene and before starting the distributed rendering process, we describe
how the Master Agent mi carries out the subscription management of the
rendering agents responsible for rendering the input scene S . Basically,
there exists a relation between a master agent mi and a finite set of
rendering agents RAi . This association configures a rendering team in
which the master mi coordinates the rendering process and the rendering
agents support the work of the distributed rendering process. As previously
described, the architecture allows different rendering teams, that is, pairs
(mi , RAi), to coexist within the same multiagent system. The relationship
between a master mi and a set of rendering agents RAi is established by
means of a subscription (Figure 5).

When a Rendering Agent raij ∈ RAi subscribes to a master mi through
a unique identifier IDraj , it previously runs a benchmark to get an initial
estimation of its computing capabilities CPj , that is, the computing power
of a rendering agent raij depends on the power of the processor integrated
into the computer on which the agent runs (in fact, rendering time

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

330 C. Gonzalez-Morcillo et al.

essentially depends on the performance of the microprocessor). This CPU
test is necessary to have an estimation of the time that the rendering of
each task requires. This initial value is modified in runtime to obtain more
precise predictions. The approximation obtained with the benchmark is
only a first estimation.

Rendering Works

Notification of a New Work
When a new work submission S is notified to a master mi , this

agent organizes the available agents RAi to complete the work (see the
AUML diagram of Figure 5, right to appreciate the interactions between
the master mi and the set of rendering agents RAi). First, mi sends a
message to RAi about the notification of a new work. The Master knows the
division into work units made by the Analyst; then, each raij uses a profiling
technique to estimate in a more accurate way the complexity of the set
of tasks assigned by mi . The idea is to distribute the estimation of tasks
in which the input scene S was divided between RAi . To do that, these
agents perform a low resolution rendering (10% of the final number of
rays) of each wui and annotate in the Blackboard the estimated time (TE)
required to perform the final rendering. This estimated time is calculated
in a common time format for the agents of the architecture by using the
computational capacity of each agent (CPj), as seen below.

Blackboard Service
There is a common place, a blackboard structure, where rendering

agents and masters share their knowledge about scenes in a blackboard
structure. This component provides a service with a set of read/write
operations related with the blackboard data structure, which has 11 fields
labelled as follows (Table 1 shows a representative subset of the fields):

• IdWork: Identifier of the work. Each rendering project has an unique
identifier.

• wu: Identifier of the work unit of the rendering project.
• Size: Size of the wu in pixels (width × height).
• Complexity: Complexity of the wu. It depends on the importance map.
• Agent: Identifier of the rendering agent assigned to this wu .
• State: Current state of the wu. It can be Waiting to be done, rendering
(Working) or finished (Done).

• TE : Estimated rendering time for this wu.
• RT : Real rendering time spent for this wu by using the final quality and
resolution settings.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

A MultiAgent Architecture for 3D Rendering Optimization 331

TABLE 1 Blackboard Status After Rendering the Dragon Model
(Figure 4) With Path Tracing and Normal Optimization Level

WU Size Comp TE RT Ibs Ls Rl

0 76,800 2 1:19 0:47 3 7 5
1 38,400 19 1:13 0:55 3 7 5
5 38,400 0 1:23 0:40 3 7 5
11 19,200 34 1:53 5:15 10 9 7
13 19,200 36 1:39 2:04 14 9 7
15 19,200 1 1:02 0:23 15 9 7
16 19,200 67 2:01 3:41 3 9 7
17 19,200 65 2:01 3:17 4 9 7
20 4800 70 1:19 0:50 3 9 7
21 4800 56 1:15 0:41 6 9 7
22 4800 99 1:29 2:29 7 9 7
23 4800 175 2:09 4:49 13 9 7
26 4800 144 1:35 2:45 12 9 6
27 4800 230 1:39 4:44 18 10 7
28 4800 176 1:14 2:51 5 9 7
29 4800 238 1:13 2:09 3 9 7
32 4800 199 1:15 8:54 24 10 7
33 4800 245 1:12 4:34 26 9 7
34 4800 9 0:51 1:32 10 9 7
35 4800 13 0:50 0:57 12 9 7

• Ibs: Interpolation band size chosen by the rendering agent using its
knowledge base.

• Ls: Number of light samples chosen by the rendering agent using its
knowledge base.

• Rl: Recursion level in mirror and transparent surfaces (for ray tracing
based methods) recommended by the rendering agent using its
knowledge base.

Simple Adaptation
TE is calculated in a common format for all rendering agents. Each

raij has an internal variable that represents its computational power (CPj).
Initially, this value is calculated by running a benchmark.

Next, we describe a possible scenario. For example, we take as the
reference value CP = 1. If one task trai1 required 5 minutes to be done by
a particular rai1 that has CP1 = 0�5, it annotates in the blackboard that the
time required to do trai1 is 10 minutes (because this agent is running on
a very fast computer). On the other hand, if another agent rai2, which is
running in an old computer (CP2 = 2), then rai2 estimates that the task trai2
will require 2 minutes in such computer, then it writes on the blackboard
the time in the common format, i.e., 1 minute. If rai1 reads the blackboard,
it knows that trai2 will require only 30 seconds to be done in its computer.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

332 C. Gonzalez-Morcillo et al.

Through this approach we are able to estimate rendering times to
achieve a good load balancing scheme by using a demand-driven (based on
dynamic auctions) model in which the more complex tasks are performed
in first place.

During the execution of the system, each raij modifies the value of this
variable (CPj) to have a more accurate representation according to the
common time. There is a very basic mechanism that implements a method
of simple adaptation. When an agent raij completes a task with an estimated
time TE in a time T , the internal variable CPj is updated by means of a
lineal adaptation equation:

CPj = (1 − k) × CPj + k × (T − TE) (1)

Being k a constant that in the current implementation and for most
cases represents a value closed to 0.1 and ensures a soft adaptation. This
mechanism should ideally be improved with a more complex learning
method that takes into account the historical behavior HA and the intrinsic
characteristics of the task (type of scene, rendering method, etc.).

Auctioning
When a set of rendering agents RAi attached to a master mi has

completed the initial estimation of tasks in which an input scene S was
divided, mi notifies to the agents RAi about the beginning of the auction.
This mechanism has been devised to reach two main goals:

1. To distribute the tasks between RAi so that the more complex work units
are first rendered. The idea consists in reducing the global rendering
time by trying to match the moment in which all the work units are
done.

2. To propose a mechanism that assigns the more complex work units to
the rendering agents with the highest computational capabilities.

Therefore RAi try to obtain the more complex work units first to avoid
these complex tasks to delay the simple ones. If two or more agents bid for
the same work unit, then mi assigns it to one of them by taking into account
two factors:

• The number of credits of the rendering agent raij (Crj). This parameter
represents the successes and failures of raij in previous tasks. raij has
success in one work unit if it is finished in a time less or equal than TE for
that task. In other case, raij increases the number of failures. The amount
of credits added or subtracted to raij is proportional to the difference
between the real rendering time TR and the estimated rendering time TE

(see details in Algorithm 4).

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

A MultiAgent Architecture for 3D Rendering Optimization 333

Algorithm 4 Biding and Assignment of Credits

for raij in LRAi (finishing) do
Lb ← raij �bid

end for
for bi in Lb | i = 1��n do

if bi �wu 	= bj �wu | ∀j = 1��i − 1, i + 1��n then
bi �ra ← bi �wu

else
bi �val ← ∑HS

m=1 b�ra�H + b�ra�Cr
for bk in Lb | k = 1��n do

if bi �wu = Bk �wu then
bk �val ← ∑HS

m=1 b�ra�H + b�ra�Cr
if bk �val > bi �val then

bk �ra ← bi �wu
else

bi �ra ← bi �wu
end if

end if
end for

end if
end for

• The historical behavior (Hj). This element represents the list of latest
successes and failures accumulated by the agent raij . It consists of a set
of boolean values that represent success or failure in the last working units
assigned. This is used to weight the more recent activity of the agent to
assign new tasks. This historical vector works as a frame of size HS .

The auction protocol of MAgArRO is an adaptation of the FIPA
contract-net protocol (FIPA n.d.b). An idle agent raij basically can bid for
a wuk , and the master mi decides about which one is finally assigned to
it. When raij is subscribed to mi , its historical vector is initialized to 0
(Hj ← 0 | i = 0��HS) and the number or credits Crj is set to the initial value
Crj = 10.

In Algorithm 4 the first “for loop” represents the time spent by mi in
waiting for the bidding of the idle agents (stored in Lb , the List of bids). In
the second loop, b�wu represents the identifier of the work unit of the bid,
b�arij is the Agent that made the bid, b�arij �Hj is the historical vector of the
agent and b�arij �Crj is the number of credits of the agent. If more than one
agent bid for the same wuk , mi evaluates all the bids and assigns the work
unit wuk to the best candidate, that is, the one with the best recent historic.

When raij finishes the rendering process, if the rendering time spent
TR is similar to TE , then the number of credits Crj is increased by two. In
other case, Crj is decreased by one.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

334 C. Gonzalez-Morcillo et al.

Use of Knowledge-Based Systems
Each rendering agent raij models its knowledge by means of a

Knowledge-Based System KBSj , which is composed of a set of rendering
techniques:

KBSj = �est1, est2, � � � , estm�

where each esti is defined as esti = 〈Rmi ,KBi〉, being Rmi a rendering
method and KBi the knowledge used to configure the method parameters
in an efficient way depending on the scene characteristics. In other words
each rendering method Rmi makes use of a set of parameters (Yi) as
input which determines the behavior of Rmi . The adequate values of these
parameters can be established depending on certain characteristics of the
scene (Vi) so that it is possible to establish the relationships (Ri) between
them with a certain precision or uncertainty. To facilitate and make
intuitive the model and description of the relevant rendering parameters
Yi and the scene characteristics Vi , we used Fuzzy Logic (Zadeh 1999).

An expert could provide us with a set of rules Ri that associates Vi to Yi

or it could be learned using machine learning techniques. In other words,
the expert could define a set of rules Ri to learn the function Vi → Yi . To
deal with the existing uncertainty, each variable (from Vi and Yi) is given
as a linguistic variable defined over its own definition domain DDV , which
represents the set of values that can take. Next, we focus on the particular
case of the path tracing rendering method. In this example, the rendering
parameters Yi to be determined are as follows:

• Recursion Level [Rl]: This parameter defines the global recursion level
in ray tracing (number of light bounces).

• Light Samples [Ls]: This parameter defines the number of samples per
light in the scene. Larger values of this parameter involves a higher
quality in the resulting image and more rendering time TR spent.

• Interpolation Band Size [Ibs]: This parameter defines the size of the
interpolation band in pixels, and it is used in the final composition of
the image (as we see in the next section).

On the other hand, the scene variables Vi that are useful to determine
Yi are as follows:

• Complexity [C]: This parameter represents the complexity/size ratio of
the work unit.

• Neighbor Difference [Nd]: This parameter represents the difference of
complexity of the current work unit in relation with its neighbor work
units.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

A MultiAgent Architecture for 3D Rendering Optimization 335

• Size [S]: this parameter represents the size of the work unit measured in
pixels (calculated as width × height).

• Optimization Level [Op]: This parameter is selected by the user, and it
determines the optimization level (more or less aggressive depending on
the initial parameters customised by the user).

The knowledge base KBi for the path tracing case is as follows:

KBi = 〈Vi ,Yi ,DDV ,Ri〉
where

• Vi = �C ,Nd , S ,Op�
• Yi = �Ibs,Ls,Rl�
• DDV = �DDVC ,DDVNd ,DDVS ,DDVOp ,DDVIbs ,DDVLs ,DDVRl� where each
DDVi is defined as follows:

– DDVC = �VerySmall(VS), Small(S),Normal(N),Big (B),VeryBig (VB)�
– DDVNd = �VerySmall(VS), Small(S),Normal(N),Big (B),VeryBig (VB)�
– DDVS = �Small(S),Normal(N),Big (B)�
– DDVOp = �VerySmall(VS), Small(S),Normal(N),Big (B),VeryBig (VB)�
– DDVIbs = �VerySmall(VS), Small(S),Normal(N),Big (B),VeryBig (VB)�
(Figure 6)

– DDVLs = �VerySmall(VS), Small(S),Normal(N),Big (B),VeryBig (VB)�
(Figure 6)

– DDVRl = �VerySmall(VS), Small(S),Normal(N),Big (B),VeryBig (VB)�
(Figure 6)

– Ri (Table 2)

The definition of the fuzzy sets of input variables is dynamically made;
the intervals of this sets are calculated in runtime. For example, in a high
complex scene, the definition of VS (Very Small) should be higher than the

FIGURE 6 Definition of the output variables

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

336 C. Gonzalez-Morcillo et al.

TABLE 2 Rules for the Optimization of a PathTracer

R Antecedent Consequent

R1: If C is {B,VB} ∧ S is {B,N} ∧ Op is {VB} ⇒ Ls is {VS} ∧ Rl is {VS}
R2: If C is {N} ∧ S is {B,N} ∧ Op is {VB} ⇒ Ls is {VS} ∧ Rl is {VS}
R3: If C is {S,VS} ∧ S is {B,N} ∧ Op is {VB} ⇒ Ls is {S} ∧ Rl is {S}
R4: If S is {S} ∧ Op is VB ⇒ Ls is {S} ∧ Rl is {N}
R5: If C is {B,VB} ∧ S is {B,N} ∧ Op is {B} ⇒ Ls is {S} ∧ Rl is {VS}
R6: If C is {N} ∧ S is {B,N} ∧ Op is {B} ⇒ Ls is {S} ∧ Rl is {VS}
R7: If C is {S,VS} ∧ S is {B,N} ∧ Op is {B} ⇒ Ls is {N} ∧ Rl is {S}
R8: If S is {S} ∧ Op is B ⇒ Ls is {N} ∧ Rl is {N}
R9: If C is {B,VB} ∧ S is {B,N} ∧ Op is {N} ⇒ Ls is {N} ∧ Rl is {S}
R10: If C is {N} ∧ S is {B,N} ∧ Op is {N} ⇒ Ls is {N} ∧ Rl is {S}
R11: If C is {S,VS} ∧ S is {B,N} ∧ Op is {N} ⇒ Ls is {N} ∧ Rl is {N}
R12: If S is {S} ∧ Op is {N} ⇒ Ls is {B} ∧ Rl is {B}
R13: If C is {B,VB} ∧ S is {B,N} ∧ Op is {S} ⇒ Ls is {B} ∧ Rl is {N}
R14: If C is {N} ∧ S is {B,N} ∧ Op is {S} ⇒ Ls is {B} ∧ Rl is {N}
R15: If C is {S,VS} ∧ S is {B,N} ∧ Op is {S} ⇒ Ls is {B} ∧ Rl is {B}
R16: If S is {S} ∧ Op is {S} ⇒ Ls is {VB} ∧ Rl is {B}
R17: If C is {B,VB} ∧ S is {B,N} ∧ Op is {VS} ⇒ Ls is {B} ∧ Rl is {N}
R18: If C is {N} ∧ S is {B,N} ∧ Op is {VS} ⇒ Ls is {VB} ∧ Rl is {B}
R19: If C is {S,VS} ∧ S is {B,N} ∧ Op is {VS} ⇒ Ls is {VB} ∧ Rl is {VB}
R20: If S is {S} ∧ Op is {VS} ⇒ Ls is {VB} ∧ Rl is {VB}
R21: If C is {VB,B} ∧ Nd is {VB} ⇒ Ls is {VB}
R22: If Nd is {VB} ⇒ Ibs is {VB}
R23: If C is {VB,B} ∧ Nd is {B} ⇒ Ls is {VB}
R24: If Nd is {B} ⇒ Ibs is {B}
R25: If C is {VB,B} ∧ Nd is {N} ⇒ Ls is {B}
R26: If Nd is {N} ⇒ Ibs is {N}
R28: If Nd is {S} ⇒ Ibs is {S}
R30: If Nd is {VS} ⇒ Ibs is {VS}

corresponding definition of VB (Very Big) in a simple scene. The partition
of these variables is made by linear distribution. The same occurs with
other parameters like Size and Neighbor Difference. In the case of the path
tracing method, the set of rules is defined as shown in Table 2. These
rules model the expert knowledge of an expert who has used a Path-Tracer
rendering engine for 3 years.

Composing the Partial Results

From the partial results generated by the different agents after having
rendering the work units, the master mi is responsible for composing
the final image. This process should not be directly made because
slight differences between fragments can be distinguished when they are
obtained from different rendering agents due to the random component
of Monte Carlo–based methods (like path tracing). In Figure 7 the quality
difference between adjacent work units with and without a blending

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

A MultiAgent Architecture for 3D Rendering Optimization 337

FIGURE 7 Left: The artifact appears with no interpolation between tasks. This problem is solved
with linear interpolation. Right: Diagram of work unit division and interpolation band position.

method can be appreciated. The image rendered with no interpolation
shows important lack of continuity. For that reason it is necessary to smooth
the joint between the work units that are neighbors by using a lineal
interpolation mask. In this way, adjacent work units share a common area
called Interpolation Band. A graphical example of the interpolation bands
shared by three work units is also shown in Figure 7.

As previously described, the size of the Interpolation Band is an output
parameter that is determined by the knowledge KBSj of a rendering agent
raij depending on several input variables Vi of the work unit (Complexity
and Neighbor Difference). Table 2 exposes the rules used by raij to set
the value of the interpolation band (see rules 22, 24, 26, 28, and 30). The
value of this parameter should be larger if the quality difference between
neighbor zones is important. To obtain better time results, the value of
this parameter should not be large because the interpolation band implies
that the rendering of a same area is performed by two or more agents.
This is specially important if the zone is very complex because the cost of
rendering this interpolation band is also very high. The amount of time
wasted in the interpolation band is currently estimated between 2% and
5% of the global rendering time.

EXPERIMENTAL VALIDATION

Platform

The results reported in this section have been obtained with the
implementation of MAgArRO, which we have made available for download
from the official web page of the project,1 under GPL Free Software
License. To evaluate the system, 16 computers with the same hardware
characteristics have been used. However, the architecture supports any

1http://www.esi.uclm.es/www/cglez/magarro

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

338 C. Gonzalez-Morcillo et al.

number of agents and the replication of the related services. The tests
were run with different number of agents, partitioning characteristics,
and optimization levels. It is important to remark that each one of
the rendering agents raij runs on a different computer since rendering
essentially involves processing power. The computers are Pentium Intel
Centrino 2 GHz, 1-GB RAM, and Debian GNU/Linux. The rendering
method used in all cases was path tracing (Yafray 0.1.0 render engine),
8 oversampling levels, 8 recursion levels in global configuration of
ray tracing, 1024 Light samples by default, and with Irradiance Cache
activated. The dragon scene to be rendered contains more than 100.000
faces, 5 levels of recursion in mirror surfaces (Figure 10), and 6 levels in
transparent surfaces (the glasses). Rendering the dragon scene with this
configuration in a single computer took 121 minutes and 17 seconds.

Implementation Details

Because MAgArRO aims at optimizing the distributed rendering by
means of a multiagent solution in which the rendering agents run on
different computers (possibly over various operating systems and under
different hardware platforms), we have used the middleware ZeroC
ICE (Henning 2004) to develop the distributed system. Against other
alternatives such as CORBA, we have chosen this modern communication
framework due to its simplicity, efficiency, heterogeneity, and the set of
advanced services provided.

As previously described, MAgArRO has been deployed on top of a
general-purpose FIPA-compliant multiagent system. In this context, the
basic management services (AMS, DF, and ACC) of the platform have
been implemented in C++ to achieve a high efficiency when processing
management functions, such as agent registration or communication
issues. On the other hand, the agents are deployed within the system
through agent factories, which have been implemented in three different
programming languages: C++, Java, and Python. The goal of this approach
is to provide the developer of the multiagent application with a wide
variety of programming options when carrying out the development of
domain-specific agents. In addition, the middleware ZeroC ICE allows
agents implemented in different programming languages to communicate
with one another.

The rendering agents have been implemented in Python and make
use of the API of the Blender 3D suite to perform the rendering of the
work units in which the input scene was divided. In addition, to specify
the knowledge base of rendering agents we used the XML metalanguage,
which allows us to easily and intuitively describe this knowledge. We also
developed in Python the Mamdani’s fuzzy inference method to apply the
set of rules that constitutes the knowledge base of rendering agents.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

A MultiAgent Architecture for 3D Rendering Optimization 339

FIGURE 8 Screenshot of the MAgArRO web interface. Left: Current state of the rendering process.
Right: Current state of the Blackboard.

Finally, and for the users to interact with MAgArRO, we developed a
web system that allows to submit works from a web browser anywhere on
the Internet. In this way, the user can observe in real-time the progress of
rendering and the currently estimated remaining time. Figure 8 shows the
visual aspect of this graphical user interface when MAgArRO is rendering
a work previously submitted by the user.

TABLE 3 Times (mm:ss) with Different
Partitioning Levels with the Normal Optimization
Level in the Dragon Scene (Figure 10)

Agents First level Second level Third level

1 92:46 82:36 105:02
2 47:21 41:13 52:41
4 26:23 23:33 26:32
8 26:25 23:31 16:52

16 26:16 23:32 10:03

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

340 C. Gonzalez-Morcillo et al.

Experimental Results

First, we study the importance of a good task division scheme.
In Table 3 the time spent when using different partitioning levels in the
dragon scene (Figure 10) is shown. These times have been obtained by
using a normal optimization level. The top part of Figure 9 graphically
represents these times. When using a simple partitioning of first level,
we obtain a good rendering time with a few agents in comparison with
the third level of partitioning. The time in the third level is longer
because we are making more partitions in the areas with more complexity
(in the glasses). This higher number of partitions involves interpolation
more bands and, therefore, to repeat the rendering of some part of
these areas in various work units. This situation implies that some of the
more complex work is made more than one time and, for example, the
rendering time with one agent in the third level is 105 minutes and in the

FIGURE 9 Top: Time (hh:mm:ss) required using different partitioning levels (normal optimization
level) for the dragon scene (Figure 10). Bottom: Time (hh:mm:ss) required with different
optimization levels (all with third level of partitioning) for the dragon scene (Figure 10).

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

A MultiAgent Architecture for 3D Rendering Optimization 341

TABLE 4 Times (mm:ss) with the Third Level of Partitioning (Balanced) in the Dragon Scene
(Figure 10) with Different Number of Agents and Optimization levels

Agents Very small Small Normal Big Very big

1 125:02 110:50 105:02 85:50 85:06
2 62:36 55:54 52:41 42:55 42:40
4 31:10 27:11 26:32 22:50 22:40
8 23:43 20:54 16:52 16:18 15:58

16 12:49 11:23 10:28 08:37 07:03

first level near 93 minutes. However, when the number of agents grows
up, the performance of the system comes better because there are no too
relevant differences of complexity among work units. In the partitioning of
first and second level, there are complex tasks that slow down the finish of
the whole rendering, and the increase in the number of agents does not
produce relevant improvements (time required with four or eight agents

FIGURE 10 First Row: Results of the dragon scene rendering when using different optimization
levels. Second Row: Quality differences between the results with and without optimization (the darker
the bigger difference). Third Row: Three available partitioning levels when dividing the scene into
work units.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

342 C. Gonzalez-Morcillo et al.

are essentially the same). For this reason, the third partitioning level works
better with a higher number of agents.

Table 4 represents the time spent in rendering the dragon scene
when using different levels of optimizations, always using a third level of
partitioning (see also Figure 9, bottom). If we simply use a small level of
optimization, we obtain better results than if rendering is done with no
optimization. The time required with very small optimization is greater
than rendering the original scene because there is some time spent in the
communication and composition of results, which, in this case, is greater
than the time needed to render the scene only divided into one work unit
with the original values.

The times are really good when only using four agents. As we can see
for example in the normal optimization level, the time required to render
the scene with four agents is only near 26 minutes in comparison with the
120 minutes of original rendering time. The rendering results with these
configurations are shown in Figure 10.

To optimize the scene, different quality levels were taken. With some
aggressive optimization levels (big or very big), there might be some lack
of quality or loss of details. For example, in Figure 10 (first row, VB),
the reflections on the glass are not so detailed like in Figure 9 (first row,
VS). These errors might appear in different parts of the image (depending
on the scene), so very high optimization levels may present this kind of
problems. These artifacts might be more or less important and could be
avoided by using more complex functions to develop the Importance Map
and by choosing less aggressive optimization methods. In other projects
these errors may be acceptable and the benefit may be worth the trouble.
For instance, in the normal optimization level, the time needed to render
the dragon scene is 26 minutes (120 minutes are necessary to render the
original scene) and there is only a relative difference of the 2.65% of the
pixels.

When studying the percentage of time spent in each step of the process
(Figure 11), as it was predictable, the rendering stage uses most of the time
(around 85%) and the estimation around the 10% (the time spent in other
stages is negligible in comparison with these ones). The upload time is also
very small because of the use of a LAN network. In other cases it may be
significant but usually small in comparison with the rendering stage. As
shown in Figure 11 (bottom), the time percentage needed by the stages
when using a different number of agents is very similar. In this way, it is
possible to use more advanced negotiation and cooperation mechanisms
between agents because this might not significantly load the system in
comparison with other times.

Other tests have been done by using the same hardware architecture
and the same rendering method. Figure 12 shows the result of these

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

A MultiAgent Architecture for 3D Rendering Optimization 343

FIGURE 11 Resume of the dragon scene times. Top: Time spent in each stage with different number
of agents. Bottom: Percentage of time spent in each stage.

tests, whereas Table 5 resumes the time results. In all these scenes the
global configuration was 1024 Light samples with Irradiance Cache, 8
oversampling levels, and 8 recursion level of path tracing. The room scene
of Figure 12 contains more than 130,000 polygons, and it makes use of
photon mapping (600,000 photons were shot from each light source),
with four area lights in the scene. The robot scene of Figure 12 is an
outdoor configuration similar to the dragon scene (Figure 10). It has
more than 24,000 faces, and the light configuration (a general sky) is
similar to the previous one, but in the dragon scene a high dynamic range
image (HDRI map) has been used to achieve realistic lighting. Finally,
the toilet scene of Figure 12 is another indoor scene, with only one light
source (the light enters through the window), using 700,000 photons and
with 12,000 faces. The complexity of this scene is due to the hard light
configuration.

The result of the tests present in most cases achieves very good
rendering times when only using four agents. Increasing the number of
agents in some cases achieves a quasi-linear optimization in rendering
times (like in the room or toilet scenes). This may be improved by choosing
a smaller minimum size of work units by adopting a better importance
map. Nevertheless, the results in any case are more than acceptable. With
this optimization level, there is almost no perceptible difference between
the original rendered scene (first row in Figure 12) and the result obtained
with the normal optimization level (second row of images in Figure 12).

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

344 C. Gonzalez-Morcillo et al.

FIGURE 12 Other scene results. First Row: No optimization. Second Row: Normal optimization. Third
Row: Quality differences between the results with and without optimization. Fourth Row: Partition for
third level.

TABLE 5 Times Spent with the Third Level of Partitioning and with a Different Number of
Agents. All Configurations, Except the First One with no Optimization, Use the Normal
Optimization Level

Agents Room scene Robot scene Toilet scene

1 (No Opt.) 26:59 32:40 29:49
1 25:32 27:11 25:47
2 13:27 13:52 13:19
4 6:58 7:04 7:53
8 4:19 3:58 4:02

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

A MultiAgent Architecture for 3D Rendering Optimization 345

CONCLUSIONS AND FUTURE WORK

The media industry is demanding for high-fidelity images for their
3D scenes. The production of 3D realistic images in computer games,
film production, and TV advertisement was over 30,000 millions of
dollars in 2005 (Roberts 2005), and it continues growing, becoming
the most economically relevant activity in the leisure area. However,
the computational requirements of full global illumination are such that it
is practically impossible to achieve this kind of rendering in a reasonable
time on a single computer.

To face this problem, the most widespread approach consists in using
a rendering farm composed of hundreds or event thousands of computers
to distribute the computational load of rendering. Other approaches
involve the use of dedicated graphic processing units to accelerate the
rendering. The main limitations of these approaches lie in achieving an
effective load balancing and the need of redesigning the algorithm for
each hardware architecture, respectively. On the other hand, the user tends
to over-optimize the value of rendering engine parameters so that the final
rendering time is considerably increased with no relevant improvement in
the perceptual quality of the final image.

The approach presented here has been devised in response to these
challenges. MAgArRO consists in a multiagent system that allows to
distribute the work units in which an input scene is divided into rendering
agents that run on different computers and use the knowledge bases
needed to optimize rendering methods. MAgArRO delivers significantly
better throughput (number of rendered work units per time unit)
than classical (based on cluster or render farm) approaches because
each independent work unit is rendered and optimized in parallel by
different agents. Besides, there exist agents within the MAS responsible
for performing an adequate division of the input scene (Analyst Agent)
and for coordinating the rendering of a 3D model by a set of rendering
agents (Master Agent). This logical division into responsibilities allows the
agents to deal with the processes of dividing the tasks, coordinating the
distributed rendering, and performing the rendering using knowledge
bases in an autonomous way. To share information the architecture
provides a Blackboard service where these agents can read and write data.

The Analyst performs a critical function in the whole process when
dividing the input scene into work units by using Importance Maps and
different division levels to balance the complexity of the work units. The
use of the importance map assures an initial [good] time estimation that
minimizes the latency of the latest task. In particular, as a result of the
optimization obtained, MAgArRO achieves overall rendering times lower
than the time required by one CPU divided by the number of agents.
Within this context, the third partition level (see the third column of the

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

346 C. Gonzalez-Morcillo et al.

third row of Figure 10) presents the best results when dividing the scene
into work units (see top of Figure 9).

The Master is responsible for coordinating the rendering agents
through an auction mechanism, which allows them to bid for the most
complex work units in first place to reduce the global rendering time.
Besides, this mechanism awards to the agents that finish the task in a
time TR shorter or similar to the previously estimated TE . This approach
improves the task retrieval by rendering agents by taking into account their
historical behavior, that is, the sequence of successes or failures previously
done.

One of the main contributions of MAgArRO is the use of knowledge
bases to optimize the rendering process by adjusting the relevant
parameters involved in this stage of photorealistic image synthesis.
Experimental results show that MAgArRO achieves excellent optimization
performance by modeling expert knowledge or previous successful
experiences through fuzzy systems. The use of fuzzy systems provides several
advantages:

• It allows us to easily model expert knowledge. The definition of the
sets of rules is based on XML files, which are easily adjustable with no
changes in the source code.

• It provides us with a highly scalable system. Thus different types of agents
can cooperate by using knowledge of different domains. The use of sets
of fuzzy rules allows us to define various roles for the running agents in
the system.

• It provides us with an understandable human representation. The
management of uncertain and incomplete information is easily done
with the use of fuzzy logic. This characteristic, typical of human
reasoning, is difficult to achieve with other representation mechanisms.

MAgArRO is pioneering in the application of multiagent principles
to 3D realistic rendering optimization. This fact opens several interesting
research avenues. Specifically, we believe it is very promising to extend
MAgArRO toward more sophisticated adaptation and machine learning
techniques. The open technology used in the development of MAgArRO
allows the agents to reside and run on different machines around the
world.

There are several opened research lines related to MAgArRO:

• Choosing a good configuration of the input parameters for a given
rendering engine is not an easy task. The quality of the synthesized
image, as well as the CPU time spent in the process, depends to a great
extent on the values of the input parameters of the rendering engine to

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

A MultiAgent Architecture for 3D Rendering Optimization 347

be used. One open research line should be oriented to the construction
of a data mining-based rendering wizard, which automatically chooses a
good initial configuration. To accomplish its objectives, the system would
have a data repository that contains several matching models. In this
way when the user inputs a model, the system tries to match the given
model with one of the matching models in the data repository according
to several similar criteria. Once one model has been matched, a data
mining analysis is performed against its corresponding data set.

• More advanced importance functions could be used in this gray scale
image generation, using perception-based rendering algorithms (based
on visual attention processes) to construct the importance map (Cater
et al. 2003; Sundstedt et al. 2005). The importance map can also be
improved by using more information about the scene, such as geometric
information about photon impacts, and direct and indirect illumination
maps.

• We are also exploring other issues, such as the possibility of
incorporating agent–agent real-time coordination schemes into
MAgArRO, which are more flexible than auctioning, adding learning
capabilities to the agents, and so on.

REFERENCES

Anderson, D. P., and G. Fedak. 2006. The computational and storage potential of volunteer
computing. In CCGRID ’06: Proceedings of the Sixth IEEE International Symposium on Cluster
Computing and the Grid, 73–80. Washington, DC: IEEE Computer Society.

Anderson, D. P., E. Korpela, and R. Walton. 2005. High-performance task distribution for volunteer
computing. In E-SCIENCE ’05: Proceedings of the First International Conference on e-Science and Grid
Computing, 196–203. Washington, DC: IEEE Computer Society.

Bellifemine, F., G. Caire, D. Greenwood, and E. Corporation. 2007. Developing Multi-Agent Systems
with JADE. New York: Wiley.

Buck, I., T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan. 2004. Brook
for GPUs: Stream computing on graphics hardware. In Proceedings of SIGGRAPH 2004, 777–786.
Los Angeles, CA: ACM.

Castro, J., J. Castro-Schez, and J. Zurita. 1999. Learning maximal structure rules in fuzzy logic for
knowledge acquisition in expert systems. Fuzzy Sets and Systems 101:331–342.

Castro-Schez, J., J. Castro, and J. Zurita. 2004. Fuzzy repertory table: a method for acquiring
knowledge about input variables to machine learning algorithm. IEEE Transactions on Fuzzy
Systems 12:123–139.

Cater, K., A. Chalmers, and G. Ward. 2003. Detail to attention: exploiting visual tasks for selective
rendering. In Proceedings of the 14th Eurographics workshop on Rendering, 270–280. Aire-la-Ville,
Switzerland: Eurographics Association.

Chalmers, A., T. Davis, and E. Reinhard. 2002. Practical Parallel Rendering. Natick, Mass.: AK Peters,
Ltd.

Cook, R., T. Porter, and L. Carpenter. 1984. Distributed ray tracing. ACM SIGGRAPH Computer
Graphics 18:137–145.

Fernandez-Sorribes, J., C. Gonzalez-Morcillo, and L. Jimenez-Linares. 2006. Grid architecture for
distributed rendering. In Proceedings of Ibero-American Symposium in Computer Graphics 2006
(SIACG’06), 141–148. Switzerland: Eurographics Association.

FIPA. n.d.a. Foundation for Intelligent Physical Agents FIPA. http://www.fipa.org (accessed March
29, 2010)

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

348 C. Gonzalez-Morcillo et al.

FIPA. n.d.b. Foundation for Intelligent Physical Agents FIPA. http://www.fipa.org/specs/fipa00029/
SC00029H.html (accessed March 29, 2010)

Foster, I., C. Kesselman, J. Nick, and S. Tuecke. 2002. The physiology of the grid: an open grid
services architecture for distributed systems integration. Muncie, Ind.: Open Grid Forum.

Gillibrand, R., K. Debattista, and A. Chalmers. 2005. Cost prediction maps for global illumination.
In Proceedings of Theory and Practice of Computer Graphics’05, 97–104. Eurographics Association.
London: Local Events.

Gillibrand, R., P. Longhurst, K. Debattista, and A. Chalmers. 2006. Cost prediction for global
illumination using a fast rasterised scene preview. In Proceedings of the 4th International Conference
on Virtual Reality, Computer Graphics, Visualisation and Interaction in Africa, Afrigraph 2006,
Cape Town, South Africa, January 25–27, 2006, 41–48.

Gooding, S., L. Arns, P. Smith, and J. Tillotson. 2006. Implementation of a distributed rendering
environment for the TeraGrid. In Proceedings of the IEEE Challenges of Large Applications in
Distributed Environments, 13–21. Paris: IEEE Computer Society Washington, DC.

Goral, C., K. Torrance, D. Greenberg, and B. Battaile. 1984. Modeling the interaction of light
between diffuse surfaces. ACM SIGGRAPH Computer Graphics 18:213–222.

Günther, J., I. Wald, and P. Slusallek. 2004. Realtime caustics using distributed photon mapping.
In Proceedings of the Eurographics Symposium on Rendering. Sweden: Eurographics Association.

Hachisuka, T. 2005. High-quality global illumination rendering using rasterization. GPU Gems
2:615–633.

Heath, T. 2008. The plush life. In SIGGRAPH ’08: ACM SIGGRAPH 2008 Computer Animation Festival,
86–87. New York: ACM.

Henning, M. 2004. A new approach to object-oriented middleware. IEEE Internet Computing 8:66–75.
Henning, M., and S. Vinoski. 1999. Advanced CORBA Programming with C++. Reading: Addison-Wesley.
Hurley, J. 2005. Ray tracing goes mainstream. Intel Technology Journal: Compute Intensive, High Parallel

Applications and Uses 9:99–107.
Jensen, H. 2004. A practical guide to global illumination using ray tracing and photon mapping. In

International Conference on Computer Graphics and Interactive Techniques. New York: ACM.
Jevans, D. 1989. Optimistic multi-processor ray tracing. In CG International ’89: New Advances in

Computer Graphics, 507–522. Germany: Springer-Verlag.
Kajiya, J. T. 1986. The rendering equation. In SIGGRAPH ’86: Proceedings of the 13th Annual Conference

on Computer Graphics and Interactive Techniques, 143–150. New York: ACM.
Kato, T., and J. Saito. 2002. Kilauea: parallel global illumination renderer. In EGPGV ’02: Proceedings

of the Fourth Eurographics Workshop on Parallel Graphics and Visualization, 7–16. Aire-la-Ville,
Switzerland: Eurographics Association.

Kerlow, I. V. 2004. The Art of 3D Computer Animation and Effects. New York: Wiley.
Kipfer, P., and P. Slusallek. 1999. Transparent distributed processing for rendering. In PVGS ’99:

Proceedings of the 1999 IEEE symposium on Parallel Visualization and Graphics, 39–46. Washington,
DC: IEEE Computer Society.

Lafortune, E., Y. Willems, and H. Santo. 1993. Bi-directional PathTracing. In Proceedings of Third
International Conference on Computational Graphics and Visualization Techniques (Compugraphics’ 93),
145–153.

Martino, J., and R. Köhling. 1992. Production rendering on a local area network. Computers &
Graphics 16:317–324.

McEwan, A., S. Schneider, W. Ifill, and P. Welch. 2007. Domain specific transformations for hardware
ray tracing. In Communicating Process Architectures 2007: WoTUG-30: Proceedings of the 30th WoTUG
Technical Meeting 479. Ios Pr Inc. Amsterdam: IOS Press.

Patoli, Z., M. Gkion, A. Al-Barakati, W. Zhang, P. Newbury, and M. White. 2008. How to Build an
Open Source Render Farm Based on Desktop Grid Computing. In Wireless Networks Information
Processing and Systems: First International Multi Topic Conference, Imtic 2008 Jamshoro, Pakistan,
April 11–12, 2008 Revised Papers, p. 268. Germany: Springer.

Pharr, M., and G. Humphreys. 2004. Physically Based Rendering: From Theory to Implementation. Morgan
Kaufmann.

Rajagopalan, R., D. Goswami, and S. P. Mudur. 2005. Functionality distribution for parallel
rendering. In Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium
(IPDPS’05), Volume 1, 18–27. Washington, DC: IEEE Computer Society.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

A MultiAgent Architecture for 3D Rendering Optimization 349

Rangel-Kuoppa, R., C. Aviles-Cruz, and D. Mould. 2003. Distributed 3D rendering system in a multi-
agent platform. In Proceedings of the Fourth Mexican International Conference on Computer Science
(ENC ’03), 168–175. Los Alamitos: IEEE Computer Society.

Ris, P., and D. Arques. 1994. Parallel ray tracing based upon a multilevel topological knowledge
acquisition of the scene. In Computer Graphics Forum, Volume 3, 221–232. New York: Wiley

Roberts, K. 2005. SISOMO: The Future on Screen. New York: powerHouse Books.
Schlechtweg, S., T. Germer, and T. Strothotte. 2005. RenderBots—Multiagent systems for direct

image generation. Computer Graphics Forum, Volume 24, 137–148. New York: Wiley.
Shirley, P., K. Sung, E. Brunvand, A. Davis, S. Parker, and S. Boulos. 2008. Fast ray tracing and the

potential effects on graphics and gaming courses. Computers & Graphics 32:260–267.
Snell, Q., and J. Gustafson. 1997. Parallel hierarchical global illumination. In High Performance

Distributed Computing, 1997. Proceedings. The Sixth IEEE International Symposium on High Performance
Distributed Computing. 12–19. Washington, DC.

Stober, A., A. Schmitt, B. Neidecker, W. Muller, T. Maus, and W. Leister. 1988. Tools for
efficient photo-realistic computer animation. In Proceeding of Eurographics ’88, Volume 88. 31–41.
Amsterdam, Elsevier.

Sundstedt, V., K. Debattista, P. Longhurst, A. Chalmers, and T. Troscianko. 2005. Visual attention for
efficient high-fidelity graphics. In Spring Conference on Computer Graphics: Proceedings of the 21st
Spring Conference on Computer Graphics, 12:169–175. New York: The Association for Computing
Machinery.

Veach, E., and L. J. Guibas. 1997. Metropolis light transport. In Proceedings of the 24th Annual
Conference on Computer Graphics and Interactive Techniques, 65–76. New York: ACM Press/Addison-
Wesley.

Ward, G., F. Rubinstein, and R. Clear. 1988. A ray tracing solution for diffuse interreflection. In
Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques, 85–92.
New York: ACM.

Weiler, M., and T. Ertl. 2001. Hardware-software-balanced resampling for the interactive visualization
of unstructured grids. In Proceedings of the Conference on Visualization’01, 199–206. Washington,
DC: IEEE Computer Society.

Weiss, G. 1999. Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence. Cambridge,
Mass.: MIT Press.

Whitted, T., and N. J. Holmdel. 1980. An improved illumination model for shaded display.
Communications 23:343–349.

Woop, S., J. Schmittler, and P. Slusallek. 2005. RPU: a programmable ray processing unit for realtime
ray tracing. In International Conference on Computer Graphics and Interactive Techniques, 434–444.
New York: ACM Press.

Zadeh, L. 1999. Fuzzy logic = computing with words. Computing with Words in Information/Intelligent
Systems 1:3–23.

Zhukov, S., A. Iones, and G. Kronin. 1998. An ambient light illumination model. In Proceedings of
Eurographics Rendering Workshop98, 45–55. NewYork: Springer-Wien.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
M
o
r
c
i
l
l
o
,

C
a
r
l
o
s

G
o
n
z
a
l
e
z
]

A
t
:

0
7
:
0
9

1
3

A
p
r
i
l

2
0
1
0

